石叶楠, 郑国磊
收稿日期:
2018-12-06
修回日期:
2018-12-29
出版日期:
2019-09-15
发布日期:
2019-04-19
通讯作者:
石叶楠
E-mail:shiyenan@buaa.edu.cn
基金资助:
SHI Yenan, ZHENG Guolei
Received:
2018-12-06
Revised:
2018-12-29
Online:
2019-09-15
Published:
2019-04-19
Supported by:
摘要: 加工特征自动识别技术是智能化设计与制造的关键支撑,已有的实用性算法普遍存在学习能力差、识别范围有限和识别速度慢等共性问题。神经网络方法在计算机视觉和模式识别领域获得了巨大成功,其自学习与自适应能力和高速计算等优势也已在加工特征识别中得到初步的展现。对加工特征识别中具有应用潜力的三种不同的神经网络方法进行了研究,剖析了神经网络识别加工特征中的预处理与编码和神经网络结构设计等关键性问题,分析了不同神经网络方法的异同点,总结了当前神经网络识别加工特征的发展方向,为相关领域的研究提供一定的理论指导与技术支持。
中图分类号:
石叶楠, 郑国磊. 三种用于加工特征识别的神经网络方法综述[J]. 航空学报, 2019, 40(9): 22840-022840.
SHI Yenan, ZHENG Guolei. A review of three neural network methods for manufacturing feature recognition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 22840-022840.
[1] | FOUGÈRES A J, OSTROSI E. Intelligent agents for feature modelling in computer aided design[J]. Journal of Computational Design and Engineering, 2018, 5(1):19-40. |
[2] | 赵鹏, 盛步云. 基于切削体分解组合策略的工艺特征识别方法[J]. 华南理工大学学报(自然科学版), 2011, 39(8):30-35. ZHAO P, SHENG B Y. Recognition method of process feature based on delta-volume decomposition and combination strategy[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8):30-35(in Chinese). |
[3] | ZEHTABAN L, ROLLER D. Automated rule-based system for Opitz feature recognition and code generation from STEP[J]. Computer-Aided Design and Applications, 2016, 13(3):309-319. |
[4] | HAN J, REQUICHA A A. Integration of feature based design and feature recognition[J]. Computer-Aided Design, 1997, 29(5):393-403. |
[5] | WANG J X, LIU S Q. Hopfield neural network-based automatic recognition for 3-D features[C]//Proceedings of 1993 International Joint Conference on Neural Networks. 1993:2121-2124. |
[6] | 齐峰, 谭建荣, 张树有. 基于径向基函数神经网络的特征识别技术研究[J]. 计算机辅助设计与图形学学报, 2002, 14(6):562-565. QI F, TAN J R, ZHANG S Y. Feature recognition based on RBF neural networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(6):562-565(in Chinese). |
[7] | ROSENBLATT F. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408. |
[8] | SAMARASINGHE S. Neural networks for applied sciences and engineering[M]. New York:Taylor & Francis Group, 2006:206-207. |
[9] | CARPENTER G A, GROSSBERG S. A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Computer Vision Graphics & Image Processing, 1987, 37(1):54-115. |
[10] | CARPENTER G A, GROSSBERG S. ART2:self-organization of stable category recognition codes for analog input patterns[J]. Applied Optics, 1987, 26(23):4919-4930. |
[11] | LANKALAPALLI K, CHATTERJEE S, CHANG T C. Feature recognition using ART2:A self-organizing neural network[J]. Journal of Intelligent Manufacturing, 1997, 8(3):203-214. |
[12] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2016:2818-2826. |
[13] | FARABET C, COUPRIE C, NAJMAN L, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8):1915-1929. |
[14] | HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97. |
[15] | LI J, WONG H C, LO S L, et al. Multiple object detection by a deformable part-based model and an R-CNN[J]. IEEE Signal Processing Letters, 2018, 25(2):288-292. |
[16] | COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537. |
[17] | HUBEL D H, WIESEL T N. Receptive fields of single neurons in the cat's striate cortex[J]. The Journal of Physiology, 1959, 148(3):574-591. |
[18] | FUKUSHIMA K, MIYAKE S. Neocognitron:A new algorithm for pattern recognition tolerant of deformations and shifts in position[J]. Pattern Recognition, 1982, 15(6):455-469. |
[19] | LECUN Y, JACKEL L D, BOTTOU L, et al. Learning algorithms for classification:A comparison on handwritten digit recognition[C]//Proceedings of the International Conference on Artificial Neural Networks, 1995:53-60. |
[20] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]//Proceedings of the IEEE, 1998:2278-2323. |
[21] | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. |
[22] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems, 2012:1097-1105. |
[23] | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of Computer Vision-ECCV 2014, 2014:818-833. |
[24] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representations (ICLR), 2015:1-14. |
[25] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9. |
[26] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[27] | GUO Y, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding:A review[J]. Neurocomputing, 2016, 187(C):27-48. |
[28] | LIN M, CHEN Q, YAN S. Network in network[C]//Proceedings of the International Conference on Learning Representations, 2014:1-10. |
[29] | SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[C]//Proceedings of 21st International Conference on Pattern Recognition, 2012:3288-3291. |
[30] | YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Proceedings of International Conference on Rough Sets and Knowledge Technology, 2014:364-375. |
[31] | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of 14th International Conference on Artificial Intelligence and Statistics. Brookline, MA:Microtome Publishing, 2011:315-323. |
[32] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of 30th International Conference on Machine Learning, 2013:1-6. |
[33] | HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision, 2016:1026-1034. |
[34] | LI W D, ONG S K, NEE A Y C. Recognition of overlapping machining features based on hybrid artificial intelligent techniques[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2000, 214(8):739-744. |
[35] | NEZIS K, VOSNIAKOS G. Recognizing 21/2D shape features using a neural network and heuristics[J]. Computer-Aided Design, 1997, 29(7):523-539. |
[36] | GUAN X S, MENG G W, YUAN X H. Machining feature recognition of part from STEP file based on ANN[C]//Proceedings of the International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010:54-57. |
[37] | PRABHAKAR S, HENDERSON M R. Automatic form-feature recognition using neural-network-based techniques on B-rep of solid models[J]. Computer-Aided Design, 1992, 24(7):381-393. |
[38] | 胡小平, 杨世锡, 谭建荣. 基于人工神经网络识别的特征自组织技术[J]. 计算机辅助设计与图形学学报, 1999, 11(4):335-339. HU X P, YANG S X, TAN J R. The method for feature self-organization based on feature recognition with neural network[J]. Journal of Computer Aided Design and Computer Graphics, 1999, 11(4):335-339(in Chinese). |
[39] | DING L, YUE Y. Novel ANN-based feature recognition incorporating design by features[J]. Computers in Industry, 2004, 55(2):197-222. |
[40] | BABIĆ B R, NEŠIĆ N, MILJKOVIĆ Z. Automatic feature recognition using artificial neural networks to integrate design and manufacturing:Review of automatic feature recognition systems[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2011, 25(3):289-304. |
[41] | HWANG J L, HENDERSON M R. Applying the perceptron to three dimensional feature recognition[J]. Journal of Design Manufacture, 1992, 2(4):187-198. |
[42] | ONWUBOLU G C. Manufacturing features recognition using backpropagation neural networks[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):289-299. |
[43] | ONWUBOLU G C. Design of parts for cellular manufacturing using neural network-based approach[J]. Journal of Intelligent Manufacturing, 1999, 10(3-4):251-265. |
[44] | HAO Y T, CHI Y M. Research on ANN-based feature recognition and manufacturing behavior sequence[C]//Proceedings of Second International Conference on Mechanic Automation and Control Engineering, 2011:7568-7574. |
[45] | MARQUEZ M, WHITE A, GILL R. A hybrid neural network-feature-based manufacturability analysis of mould reinforced plastic parts[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2001, 215(8):1065-1079. |
[46] | SUNIL V B, PANDE S S. Automatic recognition of machining features using artificial neural networks[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(9-10):932-947. |
[47] | ÖZTVRK N, ÖZTVRK F. Neural network based non-standard feature recognition to integrate CAD and CAM[J]. Computers in Industry, 2001, 45(2):123-135. |
[48] | ÖZTVRK N, ÖZTVRK F. Hybrid neural network and genetic algorithm based machining feature recognition[J]. Journal of Intelligent Manufacturing, 2004, 15(3):287-298. |
[49] | JIAN C F, LI M, QIU K Y, et al. An improved NBA-based STEP design intention feature recognition[J]. Future Generation Computer Systems, 2018, 88:357-362. |
[50] | BALU A, LORE K G, YOUNG G, et al. A deep 3D convolutional neural network based design for manufacturability framework[EB/OL]. (2016-12-07)[2018-12-06]. https://arxiv.org/pdf/1612.02141v1.pdf. |
[51] | GHADAI S, BALU A, SARKAR S, et al. Learning localized features in 3D CAD models for manufacturability analysis of drilled holes[J]. Computer Aided Geometric Design, 2018, 62:263-275. |
[52] | ZHANG Z B, JAISWAL P, RAI R. FeatureNet:machining feature recognition based on 3D convolution neural network[J]. Computer-Aided Design, 2018, 101:12-22. |
[53] | ZULKIFLI A H, MEERAN S. Decomposition of interacting features using a Kohonen self-organizing feature map neural network[J]. Engineering Applications of Artificial Intelligence, 1999, 12(1):59-78. |
[54] | MEERAN S, ZULKIFLI A H. Recognition of simple and complex interacting non-orthogonal features[J]. Pattern Recognition, 2002, 35(11):2341-2353. |
[55] | WHITE H. 1989. Learning in neural networks:A statistical perspective[J]. Neural Computation, 1989, 1(4):425-464. |
[56] | 谭昌柏, 周来水, 安鲁陵, 等. 逆向工程中基于BP网络的自动特征识别器的设计与实现[J]. 计算机辅助设计与图形学学报, 2005, 17(10):2305-2311. TAN C B, ZHOU L S, AN L L, et al. Design and implementation of an automatic feature recognizer based on BP network in reverse engineering[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(10):2305-2311(in Chinese). |
[57] | YI R Q, LI W H, WANG D, et al. Feature recognition based on graph decomposition and neural network[C]//Proceedings of Third International Conference on Convergence and Hybrid Information Technology, 2008:864-868. |
[58] | SHIN H, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1285-1298. |
[59] | HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95:43-56. |
[60] | SHAO X Y, CHEN Z M, GAO L. A framework for manufacturing features recognition using a neural network trained by PSO algorithm[C]//Proceedings of Conference on Computational Engineering in Systems Applications, 2007:1371-1374. |
[61] | ZHA J, LU C, LV H G. A rare feature recognition approach based on Fuzzy ART neural networks[C]//Proceedings of Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing. Washington, D.C.:IEEE, 2009:57-62. |
[62] | 陶品, 张钹, 叶榛. 三维模型特征识别中的神经网络方法[J]. 计算机集成制造系统, 2002, 8(11):912-918. TAO P, ZHANG B, YE Z. Neural network method in 3D model feature recognition[J]. Computer Integrated Manufacturing Systems, 2002, 8(11):912-918(in Chinese). |
[63] | VERMA A K, RAJOTIA S. A review of machining feature recognition methodologies[J]. International Journal of Computer Integrated Manufacturing, 2010, 23(4):353-368. |
[64] | DING L, MATTHEWS J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture[J]. Computers & Industrial Engineering, 2009, 57(4):1457-1471. |
[1] | 马菲, 张琼, 赖培军, 岳一笛. 基于BP神经网络的试飞训练安全性量化模型[J]. 航空学报, 2024, 45(5): 529957-529957. |
[2] | 倪育德, 闫苗玉, 刘瑞华. 基于DOA-BP神经网络的电离层TEC短期预测[J]. 航空学报, 2024, 45(4): 328707-328707. |
[3] | 李忠智, 马金毅, 艾剑良, 董一群. 拟VGG16网络的航空传感器故障检测分类[J]. 航空学报, 2023, 44(S1): 727615-727615. |
[4] | 刘武, 吴云燕, 刘玮, 田明明, 黄天鹏. 考虑未知扰动的RLV再入鲁棒容错姿态控制[J]. 航空学报, 2023, 44(S1): 727787-727787. |
[5] | 刘晨阳, 吴大伟, 郭一泽, 吕欣赛, 周佳妮, 邵书义. 不确定强耦合下四旋翼姿态鲁棒自适应控制[J]. 航空学报, 2023, 44(S1): 727645-727645. |
[6] | 王志凯, 陈盛, 范玮. 神经网络宽度对燃烧室排放预测的影响[J]. 航空学报, 2023, 44(5): 126816-126816. |
[7] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[8] | 王宏伦, 王延祥, 刘一恒. 基于轨迹映射的无人机拖曳式空中回收轨迹优化[J]. 航空学报, 2023, 44(20): 628775-628775. |
[9] | 李怀璐, 王旭, 王霄, 赵彤, 张伟伟. 大迎角机动飞行的气动力建模与飞行仿真[J]. 航空学报, 2023, 44(19): 128410-128410. |
[10] | 朱祥维, 沈丹, 肖凯, 马岳鑫, 廖祥, 古富强, 余芳文, 高柯夫, 刘经南. 类脑导航的机理、算法、实现与展望[J]. 航空学报, 2023, 44(19): 28569-028569. |
[11] | 岳承磊, 汪雪川, 岳晓奎, 宋婷. 基于逆强化学习的航天器交会对接方法[J]. 航空学报, 2023, 44(19): 328420-328420. |
[12] | 梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098-81280986. |
[13] | 宋玉存, 葛泉波, 朱军龙, 陆振宇. 基于梯度差自适应学习率优化的改进YOLOX目标检测算法[J]. 航空学报, 2023, 44(14): 327951-327951. |
[14] | 任乐亮, 鲜勇, 李少朋, 雷刚, 伍薇, 李冰. 基于改进二阶优化器并行学习的弹道导弹神经网络落点预测方法[J]. 航空学报, 2023, 44(14): 327964-327964. |
[15] | 董磊, 陈泓兵, 陈曦, 赵长啸. 基于DQN的单一飞行员驾驶模式分布式多智能体联盟任务分配策略[J]. 航空学报, 2023, 44(13): 327895-327895. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学