[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:What next?[J]. AIAA Journal, 2001, 39(8):1517-1530. [2] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99. [3] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46:469-492. [4] SETTLES G S, FITZPATRICK T J. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585. [5] ARDONCEAU P L. The structure of turbulence in a supersonic shock wave/boundary layer interaction[J]. AIAA Journal, 1984, 22(9):1254-1262. [6] SMITS A J, MUCK K C. Experimental study of three shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 1987, 182:291-314. [7] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock wave/boundary layer interaction in compression ramp flows[J]. Journal of Fluid Mechanics, 1987, 180:405-428. [8] ERENGIL M E, DOLLING D S. Correlation of separation shock motion with pressure fluctuations in the incoming boundary layer[J]. AIAA Journal, 1991, 29(11):1868-1877. [9] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12):2412-2422. [10] HUMBLE R A, SCARANO F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635:47-74. [11] ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1 685[J]. Journal of Fluid Mechanics, 2000, 420:47-83. [12] RINGUETTE M J, WU M, MARTIN M P. Low Reynolds number effects in a Mach 3 shock and turbulent boundary layer interaction[J]. AIAA Journal, 2008, 46(7):1884-1887. [13] PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185. [14] PRIEBE S, WU M, MARTIN M P. Low-frequency unsteadiness in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49. [15] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658. [16] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69. [17] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588. [18] 童福林, 李欣, 于长平, 等. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2):197-208. TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):197-208(in Chinese). [19] MURTHY V S, ROSE W C. Wall shear stress measurements in a shock-wave boundary layer interaction[J]. AIAA Journal, 1978, 16(7):667-672. [20] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston, VA:AIAA, 2005. [21] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese). [22] MARTIN M P, TAYLOR E M, WU M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220:270-289. [23] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18:065113. [24] PIROZZOLI S, BERNARDINI M, GRASSO F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation[J]. Journal of Fluid Mechanics, 2009, 657:361-393. [25] WU X, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630:5-41. [26] CARLOS D D, SYLVAIN L, CHRISTOS V J. Wall shear stress fluctuations:Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer[J]. Physics of Fluids, 2017, 29:055102. [27] HU Z W, MORFEY C L, SANDHAM N D. Wall pressure and shear stress spectra from direct simulation of channel flow[J]. AIAA Journal, 2006, 44(7):1541-1549. [28] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889. [29] COLELLA K J, KEITH W L. Measurements and scaling of wall shear stress fluctuations[J]. Experiments in Fluids, 2003, 34(2):253-260. [30] BRUCKER C. Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging[J]. Physics of Fluids, 2015, 27:031705. [31] JEON S, CHOI H, MOIN P. Space-time characteristics of the wall shear-stress fluctuations in a low Reynolds number channel flow[J]. Physics of Fluids, 1999, 11:3084-3094. [32] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25:539-575. [33] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock wave/boundary layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657. |