王莉, 戴泽华, 杨善水, 毛玲, 严仰光
出版日期:
2019-02-15
发布日期:
2018-08-27
通讯作者:
王莉
E-mail:liwang@nuaa.edu.cn
基金资助:
WANG Li, DAI Zehua, YANG Shanshui, MAO Ling, YAN Yangguang
Online:
2019-02-15
Published:
2018-08-27
Supported by:
摘要: 能源危机和环境问题推动了绿色航空的发展,飞机电气化是绿色航空的主要实现手段,已经成为航空技术发展的重要方向。本文介绍了飞机电气化的发展历程,阐述了电气化飞机电力系统的关键技术及其研究现状,分析了先进飞机电力系统设计的关键技术,指出了飞机电力系统综合化、智能化的发展特点。在分析飞机电力系统设计存在的问题的基础上,文章初步提出了电气化飞机电力系统智能化设计平台的理论框架、功能和特点,分析了支撑电力系统智能化设计平台的关键技术,指出了航空智能化设计的研究方向。
中图分类号:
王莉, 戴泽华, 杨善水, 毛玲, 严仰光. 电气化飞机电力系统智能化设计研究综述[J]. 航空学报, 2019, 40(2): 522405-522405.
WANG Li, DAI Zehua, YANG Shanshui, MAO Ling, YAN Yangguang. Review of intelligent design of electrified aircraft power system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522405-522405.
[1] HERNANDEZ D, SAUTREUIL M, RETIERE N, et al. A new methodology for aircraft HVDC power systems design[C]//IEEE International Conference on Industrial Technology. Piscataway, NJ:IEEE Press, 2009:1-6. [2] RIU D, SAUTREUIL M, RETIÈRE N, et al. Control and design of DC grids for robust integration of electrical devices. Application to aircraft power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 58(2):181-189. [3] 郭生荣. 航空机电系统综合技术发展[J]. 航空精密制造技术, 2016, 52(1):1-6. GUO S R. Development of aviation electromechanical system integration technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):1-6(in Chinese). [4] 张兰红, 胡育文, 黄文新. 异步电机起动/发电系统起动向发电的转换研究[J]. 航空学报, 2005, 26(3):356-361. ZHANG L H, HU Y W, HUANG W X. Research on the conversion from starting mode to generating mode of induction machine starter/generator system[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):356-361(in Chinese). [5] 张方华, 龚春英, 邓翔. 航空静止变流器的研究综述[J]. 南京航空航天大学学报, 2014, 46(1):19-26. ZHANG F H, GONG C Y, DENG X. Review of aeronautic static inverter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(1):19-26(in Chinese). [6] 阮立刚, 王莉. 一种新型直流固态功率控制器行为模型[J]. 航空学报, 2012, 33(1):129-137. RUAN L G, WANG L. A novel behavioral model of solid state power controller[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):129-137(in Chinese). [7] 白龙, 孙楚, 周元钧. 航空机电作动器的混合整流全状态反馈控制[J]. 航空学报, 2016, 37(6):1940-1952. BAI L, SUN C, ZHOU Y J. Full-state feedback control of a novel hybrid rectifier applied to aircraft electric actuator load[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1940-1952(in Chinese). [8] 相里康, 马瑞卿. 飞机全电刹车机电作动系统上电自检测[J]. 航空学报, 2016, 37(12):3832-3842. XIANG L K, MA R Q. Power-on self-test of electro-mechanical actuation system for aircraft electric braking[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3832-3842(in Chinese). [9] 王丹阳. 宽体客机电网实时仿真技术研究[D]. 南京:南京航空航天大学, 2017:52-66. WANG D Y. Research on real time simulation of wide-body aircraft electric power system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:52-66(in Chinese). [10] 雷屹坤. 飞机综合一体化热/能量管理系统方案研究[D]. 南京:南京航空航天大学, 2014:18-30. LEI Y K. Research on scheme of integrated thermal and energy management system of aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:18-30(in Chinese). [11] 郑先成, 张晓斌, 黄铁山. 国外飞机电气技术的现状及对我国多电飞机技术发展的考虑[J]. 航空计算技术, 2007, 37(5):120-122. ZHENG X C, ZHANG X B, HUANG T S. States of foreign aircraft electric technologies and consideration on our aircraft electric technologic developments[J]. Aeronautical Computing Technique, 2007, 37(5):120-122(in Chinese). [12] FELDER J L, BROWN G V, KIM H D, et al. Turboelectric distributed propulsion in a hybrid wing body aircraft:ISABE-2011-1340[R]. Washington, D.C.:NASA Glenn Research Center, 2011. [13] BERTON J J, KIM H D, SINGH R, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 86(6):558-561. [14] BROWN G. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013:1-18. [15] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Propulsion system component considerations for NASA N3-X turboelectric distributed propulsion system[J]. SAE International Journal of Aerospace, 2015, 5(2):344-353. [16] VRATNY P C, KUHN H, HORNUNG M. Influences of voltage variations on electric power architectures for hybrid electric aircraft[J]. CEAS Aeronautical Journal, 2017, 8(1):31-43. [17] JONES C E, NORMAN P J, GALLOWAY S J, et al. Comparison of candidate architectures for future distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6):1-9. [18] ARMSTRONG M, ROSS C, PHILLIPS D, et al. Stability, transient response, control, and safety of a high-power electric grid for turboelectric propulsion of aircraft:NASA/CR-2013-217865[R]. Washington, D.C.:NASA, 2013. [19] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Trade studies for NASA N3-X turboelectric distributed propulsion system electrical power system architecture[J]. SAE International Journal of Aerospace, 2012, 5(2):325-336. [20] ARMSTRONG M J, BLACKWELDER M, BOLLMAN A, et al. Architecture, voltage, and components for a turboelectric distributed propulsion electric grid:NASA/CR-2015-218440[R]. Washington, D.C.:NASA, 2015. [21] NALIANDA D, SINGH R. Turbo-electric distributed propulsion opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 896(6):543-549. [22] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391. [23] MALKIN P, PAGONIS M. Superconducting electric power systems for hybrid electric aircraft[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):515-518. [24] BERG F, PALMER J, MILLER P, et al. HTS electrical system for a distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):1-5. [25] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese). [26] 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5):622-634. ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5):622-634(in Chinese). [27] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese). [28] ANTCLIFF K R, CAPRISTAN F M. Conceptual design of the Parallel Electric-Gas Architecture with Synergistic Utilization Scheme (PEGASUS) concept[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2017:1-6. [29] 宋利康, 郑堂介, 朱永国, 等. 飞机脉动总装智能生产线构建技术[J]. 航空制造技术, 2018(Z1):28-32. SONG L K, ZHENG T J, ZHU Y G, et al. Construction technologies of intelligent pulse production line for aircraft final assembly[J]. Manufacturing Technology & Machine Tool, 2018(Z1):28-32(in Chinese). [30] 帅朝林, 陈雪梅, 邱世广. 虚拟现实技术在航空智能制造中的应用思考与展望[J]. 航空制造技术, 2016, 59(16):26-33. SHUAI C L, CHEN X M, QIU S G. Thinking and prospect of virtual reality application in aerospace intelligent manufacturing[J]. Manufacturing Technology & Machine Tool, 2016, 59(16):26-33(in Chinese). [31] 曾艺. 民用飞机客舱智能舷窗系统设计[J]. 航空科学技术, 2015, 26(8):53-56. ZENG Y. Design of cabin smart window system for civil aircrafts[J]. Aeronautical Science & Technology, 2015, 26(8):53-56(in Chinese). [32] BUSCHHORN S T, KESSLER S S, LACHMANN N, et al. Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites[C]//54th AIAA/ASME/ASCE/AHS/ASC Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013:AIAA-2013-1729. [33] 李永锋. 宽体客机飞控电作动系统设计[J]. 航空学报, 2017, 38(S1):147-155. LI Y F. Electrically powered actuation system design for long range wide body commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):147-155(in Chinese). [34] 孟繁鑫, 王瑞琪, 高赞军, 等. 多电飞机电动环境控制系统关键技术研究[J]. 航空科学技术, 2018, 29(2):1-8. MENG F X, WANG R Q, GAO Z J, et al. Research of key technology for the more electrical aircraft electric environmental control system[J]. Aeronautical Science and Technology, 2018, 29(2):1-8(in Chinese). [35] 袁起航, 林贵平, 李广超, 等. 电脉冲除冰系统电磁脉冲力仿真分析[J]. 北京航空航天大学学报, 2016, 42(3):632-638. YUAN Q H, LIN G P, LI G C, et al. Simulation and analysis on electromagnetic impulse force of electro-impulse de-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):632-638(in Chinese). [36] 高泽海, 马存宝, 宋东. 飞机燃油供油系统性能退化与故障预测[J]. 西北工业大学学报, 2015(2):209-215. GAO Z H, MA C B, SONG D. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015(2):209-215(in Chinese). [37] LÜCKEN A, BROMBACH J, SCHULZ D. Design and protection of a high voltage DC onboard grid with integrated fuel cell system on more electric aircraft[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2010:1-6. [38] SANTARELLI M, CABRERA M, CALIÍ M. Solid oxide fuel based auxiliary power unit for regional jets:Design and mission simulation with different cell geometries[J]. Journal of Fuel Cell Science & Technology, 2010, 7(2):58-66. [39] ROMEO G, CESTINO E, BORELLO F, et al. An engineering method for air-cooling design of 2-seat propeller driven aircraft powered by fuel cells[J]. Journal of Aerospace Engineering, 2011, 24(1):79-88. [40] DAI Z H, WANG L, YANG S S. Fuel cell based auxiliary power unit in more electric aircraft[C]//IEEE Transportation Electrification Conference and Expo, Asia-Pacific. Piscataway, NJ:IEEE Press, 2017:1-6. [41] 阮立刚, 王莉, 叶家瑜, 等. 基于混合信号状态机的交流固态功率控制器功能模型[J]. 航空学报, 2017, 38(11):321133. RUAN L G, WANG L, YE J Y, et al. Functional modeling of AC solid state power controller based on mixed signal state machine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):321133(in Chinese). [42] SCHROTER T, SCHULZ D. The electrical aircraft network-benefits and drawbacks of modifications[J]. IEEE Transactions on Aerospace & Electronic Systems, 2013, 49(1):189-200. [43] COTTON I, NELMS A, HUSBAND M. Defining safe operating voltages for aerospace electrical systems[C]//Electrical Insulation Conference and Electrical Manufacturing Expo. Piscataway, NJ:IEEE Press, 2007:67-71. [44] COTTON I, NELMS A. High voltage aircraft power systems[J]. IEEE Aerospace & Electronic Systems Magazine, 2008, 23(2):25-32. [45] CHRISTOU I, NELMS A, COTTON I, et al. Choice of optimal voltage for more electric aircraft wiring systems[J]. IET Electrical Systems in Transportation, 2011, 1(1):24-30. [46] NYA B H, BROMBACH J, SCHULZ D. Benefits of higher voltage levels in aircraft electrical power systems[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2012:1-5. [47] NYA B, BROMBACH J, SCHRÖTER T, et al. Weight evaluation of cabin power architecture on smaller civil aircraft[C]//International Workshop on Aircraft System Technologies. Hamburg, Germany:Deutsche Nationalbibliothek, 2011:1-10. [48] BROMBACH J, LUCKEN A, NYA B, et al. Comparison of different electrical HVDC-architectures for aircraft application[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2012:1-6. [49] SCHROETER T, NYA B H, SCHULZ D. Potential analysis for the optimization of the electrical network of large modern civil and future single aisle aircraft and examples of the network capacity utilisation[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2010:1-7. [50] KOSTAKIS T, NORMAN P J, GALLOWAY S J. Assessing network architectures for the more electric engine and aircraft[C]//Power Engineering Conference. Piscataway, NJ:IEEE Press, 2014:1-6. [51] NUZZO P, XU H, OZAY N, et al. A contract-based methodology for aircraft electric power system design[J]. IEEE Access, 2014, 2(2):1-25. [52] 陈娟, 王占林. 飞机多机电系统综合仿真的研究[J]. 仪器仪表学报, 2003, 24(4):638-640. CHEN J, WANG Z L. Investigation of integrating management of multiple electro-mechanical system[J]. Chinese Journal of Scientific Instrument, 2003, 24(4):638-640(in Chinese). [53] 郑伟, 解向军. 先进战斗机综合机电系统试验技术研究[J]. 飞机设计, 2010, 30(5):31-35. ZHENG W, XIE X J. Research on integrated electromechanical systems test technology for advanced fighter[J]. Aircraft Design, 2010, 30(5):31-35(in Chinese). [54] 郭鹏, 李亚晖, 孙允明. 机载机电综合管理系统架构建模与仿真方法[J]. 电光与控制, 2017, 24(12):100-105. GUO P, LI Y H, SUN Y M. Architecture modeling and simulation methods of integrated electromechanical management system[J]. Electronics Optics & Control, 2017, 24(12):100-105(in Chinese). [55] SINAN Y. Optimal controller design for more-electric aircraft power systems[D]. Pittsburgh:University of Pittsburgh, 2011:22-27. [56] XU H. Design, specification, and synthesis of aircraft electric power systems control logic[D]. Pasadena:California Institute of Technology, 2013:42-73. [57] MAASOUMY M, NUZZO P, IANDOLA F, et al. Optimal load management system for aircraft electric power distribution[C]//IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2014:2939-2945. [58] SHAHSAVARI B, MAASOUMY M, SANGIOVANNI-VINCENTELLI A, et al. Stochastic model predictive control design for load management system of aircraft electrical power distribution[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2015:3649-3655. [59] XIA X, LAWSON C P. The development of a design methodology for dynamic power distribution management on a civil transport all electric aircraft[J]. Aerospace Science & Technology, 2013, 25(1):125-131. [60] XIA X. Dynamic power distribution management for all electric aircraft[D]. Bedfordshire:Cranfield University, 2011:67-79. [61] 彭城. 多电飞机电能管理关键技术研究[D]. 南京:南京航空航天大学, 2014:31-34. PENG C. Key technologies of electric power management for more electrical aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:31-34(in Chinese). [62] 吴雅婷. 宽体客机电网管理技术研究和实现[D]. 南京:南京航空航天大学, 2016:11-16. WU Y T. Research and realization on grid-management technology of wide-body airplane[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:11-16(in Chinese). [63] 唐彬鑫. 飞机多电化负载特性分析和管理技术研究[D]. 南京:南京航空航天大学, 2017:31-36. TANG B X. Research on characteristics analysis and management of MEA electrical loads[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:31-36(in Chinese). [64] 葛玉雪, 宋笔锋, 裴扬. 基于可用能的多电飞机能量利用率分析方法[J]. 航空学报, 2014, 35(5):1276-1283. GE Y X, SONG B F, PEI Y. Analysis method of more-electric aircraft energy efficiency based on exergy[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1276-1283(in Chinese). [65] BARRUEL F, CAISLEY A, RETIERE N, et al. Stability approach for vehicles DC power network:Application to aircraft on-board system[C]//Power Electronics Specialists Conference. Piscataway, NJ:IEEE Press, 2005:1163-1169. [66] AREERAK K N, WU T, BOZHKO S V, et al. Aircraft power system stability study including effect of voltage control and actuators dynamic[J]. IEEE Transactions on Aerospace & Electronic Systems, 2011, 47(4):2574-2589. [67] AREERAK K N, BOZHKO S V, ASHER G M. DQ-transformation approach for modelling and stability analysis of AC-DC power system with controlled PWM rectifier and constant power loads[C]//200813th International Power Electronics and Motion Control Conference. Piscataway, NJ:IEEE Press, 2008:2049-2054. [68] BROMBACH J, JORDAN M, GRUMM F, et al. Influence of small constant-power-loads on the power supply system of an aircraft[C]//International Conference on Compatibility and Power Electronics. Piscataway, NJ:IEEE Press, 2013:97-102. [69] ZHENG X, LIU W, ZHANG X. Voltage stability analysis for aircraft variable frequency generation system loaded with PWM rectifier[C]//2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL) Piscataway, NJ:IEEE Press, 2013:1-5. [70] EL-KISHKY H, EBRAHIMI H. On modeling and control of advanced aircraft electric power systems:System stability and bifurcation analysis[J]. International Journal of Electrical Power & Energy Systems, 2014, 63:246-259. [71] 朱成花, 严仰光. 一种改进的阻抗比判据[J]. 南京航空航天大学学报, 2006, 38(3):315-320. ZHU C H, YAN Y G. Improved impedance criterion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(3):315-320(in Chinese). [72] 李永东, 章玄, 许烈. 多电飞机高压直流供电系统稳定性研究综述[J]. 电源学报, 2017, 15(2):2-11. LI Y D, ZHANG X, XU L. A survey on stability analysis for HVDC power system in MEA[J]. Journal of Power Supply, 2017, 15(2):2-11(in Chinese). [73] KUHN M R, JI Y, SCHRDER D. Stability studies of critical DC power system component for more electric aircraft using μ sensitivity[C]//Mediterranean Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2007:1-6. [74] SUMSUROOAH S, ODAVIC M, BOZHKO S. A modeling methodology for robust stability analysis of nonlinear electrical power systems under parameter uncertainties[J]. IEEE Transactions on Industry Applications, 2016, 52(5):4416-4425. [75] WENG K H, CHEN T, LING K V, et al. Variance analysis of robust state estimation in power system using influence function[J]. International Journal of Electrical Power & Energy Systems, 2017, 92:53-62. [76] CHEN T. Robust state estimation for power systems via moving horizon strategy[J]. Sustainable Energy Grids & Networks, 2017, 10:46-54. [77] HORCH A, NACERI A, AYAD A. Power system stabilizer design using H∞ robust technique to enhance robustness of power system[C]//Renewable and Sustainable Energy Conference. Piscataway, NJ:IEEE Press, 2015:884-889. [78] PERES W, JÚNIOR I C S, FILHO J A P. Gradient based hybrid metaheuristics for robust tuning of power system stabilizers[J]. International Journal of Electrical Power & Energy Systems, 2018, 95:47-72. [79] FURTAT I B, FRADKOV A L. Robust control of multi-machine power systems with compensation of disturbances[J]. International Journal of Electrical Power & Energy Systems, 2015, 73:584-590. [80] CAMPOS V A F D, CRUZ J J D. Robust hierarchized controllers using wide area measurements in power systems[J]. International Journal of Electrical Power & Energy Systems, 2016, 83:392-401. [81] BRIVIO C, MONCECCHI M, MANDELLI S, et al. A novel software package for the robust design of off-grid power systems[J]. Journal of Cleaner Production, 2017, 166:668-679. [82] WU T, BOZHKO S V, ASHER G M, et al. Accelerated functional modeling of aircraft electrical power systems including fault scenarios[C]//200935th Annual Conference of IEEE Industrial Electronics. Piscataway, NJ:IEEE Press, 2009:2537-2544. [83] 代京, 张平, 李行善, 等. 航空机电系统测试性建模与分析新方法[J]. 航空学报, 2010, 31(2):277-284. DAI J, ZHANG P, LI X S, et al. Novel approach for aviation electromechanical system testability modeling and analysis[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):277-284(in Chinese). [84] MENG L, YANG S, WANG L, et al. Integrated simulation of electric power systems based on LabVIEW and Simulink[C]//International Conference on Future Computer Sciences and Application. Piscataway, NJ:IEEE Press, 2011:78-81. [85] WANG C, HUANG J. Simulation and evaluation models of aircraft power supply system based on Simulink/LabVIEW[C]//Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control. Piscataway, NJ:IEEE Press, 2014:81-86. [86] LI B, LI W, ZHANG X, et al. Modeling and simulation of aircraft power supply system based on Dymola and Modelica[C]//International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference. Piscataway, NJ:IEEE Press, 2017:1-6. [87] DAI Z H, WANG L, YANG S S. Multi-signal model in application of spacecraft power system testability[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2016:1-7. [88] MODELISAR. Functional mock-up interface for model exchange[J]. Information Technology for European Advancement, 2010(1):17-23. [89] 李伟林, 张晓斌, 董延军. 电力系统综合仿真方法研究(一):VPNET(英文)[J]. 中国电机工程学报, 2012, 32(13):95-102. LI W L, ZHANG X B, DONG Y J. Study of co-simulation methods applied in power systems (Part I):VPNET[J]. Proceedings of the CSEE, 2012, 32(13):95-102(in Chinese). [90] 李浩敏. 基于模型的飞机系统架构设计综述[J]. 民用飞机设计与研究, 2017(3):17-20. LI H M. Review on the model-based A/C system architecture design[J]. Civil Aircraft Design and Research, 2017(3):17-20(in Chinese). [91] 陆清, 吴双. 民用飞机虚拟集成试验技术研究[J]. 民用飞机设计与研究, 2017(2):1-7. LU Q, WU S. The technique research on virtual integration test for civil aircraft[J]. Civil Aircraft Design and Research, 2017(2):1-7(in Chinese). [92] 宋文滨. 未来飞机的智能化技术综述与发展展望[J]. 民用飞机设计与研究, 2017(3):122-129. SONG W B. Smart technologies for future aircraft[J]. Civil Aircraft Design & Research, 2017(3):122-129(in Chinese). [93] 吴光辉, 刘虎. 大型客机数字化设计支持体系框架[J]. 航空学报, 2008, 29(5):1386-1394. WU G H, LIU H. Framework of digital design support system-of-systems for large airliners[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1386-1394(in Chinese). [94] 邰忠天, 田玉斌, 张卓. 飞机电气系统数字化设计流程优化研究[J]. 航空科学技术, 2016, 27(6):30-33. TAI Z T, TIAN Y B, ZHANG Z. Research on aircraft EPS digital design flow optimization[J]. Aeronautical Science & Technology, 2016, 27(6):30-33(in Chinese). [95] ALSINA J. Development of an aircraft design expert system[D]. England:Cranfield University, 1988:36-47. [96] BALS J, HOFER G, PFEIFFER A, et al. Virtual iron bird-A multidisciplinary modelling and simulation platform for new aircraft system architectures[C]//Deutscher Luft-und Raumfahrkongress 2005, Bonn:German Society for Aeronautics and Astronautics, 2005:1-9. [97] JI Y, BALS J. A novel Modelica signal analysis tool towards design of more electric aircraft[C]//IEEE International Conference on Computer Science and Information Technology. Piscataway, NJ:IEEE Press, 2010:152-156. [98] KUHN M R, JI Y, JOOS H D, et al. An approach for stability analysis of nonlinear electrical network using anti optimization[C]//2008 IEEE Power Electronics Specialists Conference. Pissataway, NJ:IEEE Press, 2008:3873-3879. [99] ROGERSTEN R, XU H, OZAY N, et al. An aircraft electric power testbed for validating automatically synthesized reactive control protocols[C]//International Conference on Hybrid Systems:Computation and Control. New York:ACM, 2013:89-94. [100] KUHN M R, JI Y. Modelica for large scale aircraft electrical network V&V[C]//Proceedings of the 10th International Modelica Conference. Lund:Modelica Association, 2014:747-756. [101] ROGERSTEN R, XU H, OZAY N, et al. Control software synthesis and validation for a vehicular electric power distribution testbed[J]. Journal of Aerospace Information Systems, 2014, 11(10):665-678. [102] BESTER J E, MABWE A M, HAJJAJI A E. A virtual electrical test bench for more electrical aircraft architecture verification and energy management development[C]//European Conference on Power Electronics and Applications. Piscataway, NJ:IEEE Press, 2015:1-10. [103] PINTO A, BECZ S, REEVE H. Correct-by-construction design of aircraft electric power systems[C]//AIAA Aviation Technology, Integration, and Operations. Reston, VA:AIAA, 2013:1-11. [104] FU S W J, KARIMI K J, JAKSIC M D, et al. Electrical power system stability optimization system:US 201401220-50A1[P]. 2014-05-01. [105] LAU M Y. Expert system for aerial vehicle deployment system selection[D]. Toronto:Ryersn University, 2005:26-45. [106] NOOR A K, VENNERI S L. ISE:Intelligent synthesis environment for future aerospace systems[J]. IEEE Aerospace & Electronic Systems Magazine, 2008, 23(4):31-44. [107] FRANS V D B, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):225-239. [108] 余雄庆, 丁运亮. 多学科设计优化算法及其在飞行器设计中应用[J]. 航空学报, 2000, 21(1):2-7. YU X Q, DING Y L. Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):2-7(in Chinese). [109] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [110] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):87-105. GUI Y W, LIU L, DAI Y G, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):87-105(in Chinese). [111] ZHANG Q, LI H. MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731. [112] DEB K, JAIN H. Handling many-objective problems using an improved NSGA-Ⅱ procedure[C]//2012 IEEE Congress on Evolutionary Computation (CEC). Piscataway, NJ:IEEE Press, 2012:1-8. |
[1] | 黄维康, 张卓然, 达兴亚, 袁培博, 高华敏. 高速对转涵道风扇双驱动电机的热特性[J]. 航空学报, 2024, 45(8): 129048-129048. |
[2] | 杨雄, 李小康, 郭大伟, 程谋森, 张帆, 车碧轩, 雷清雲. 高功率波加热磁等离子体推力器研究现状与展望[J]. 航空学报, 2024, 45(7): 28761-028761. |
[3] | 孔垂欢, 吴大卫, 谭兆光, 潘立军, 马茹冰, 司江涛. 三翼面验证机纯电方案设计[J]. 航空学报, 2024, 45(6): 629618-629618. |
[4] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937-529937. |
[5] | 王科雷, 周洲, 郭佳豪, 李明浩. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2): 128643-128643. |
[6] | 赵清风, 周洲, 李明浩, 徐德. 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024, 45(10): 129252-129252. |
[7] | 宋东彬, 闫炬壮, 杨文将, 白明亮, 刘汝婧, 王少鹏, 刘宇, 田爱梅. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 27469-027469. |
[8] | 夏济宇, 周洲, 徐德, 王正平. 矢量电推进系统的气动-推进耦合模型[J]. 航空学报, 2023, 44(11): 127672-127672. |
[9] | 文谦, 杨家伟, 武泽平, 杨希祥, 赵海龙, 王志祥. 快速交叉验证改进的运载火箭近似建模方法[J]. 航空学报, 2022, 43(9): 225967-225967. |
[10] | 苏宁, 黄文新. 电推进飞机定子双绕组感应发电机并联系统[J]. 航空学报, 2022, 43(8): 325409-325409. |
[11] | 张星雨, 高正红, 雷涛, 闵志豪, 李伟林, 张晓斌. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 125389-125389. |
[12] | 朱炳杰, 杨希祥, 宗建安, 邓小龙. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 25556-025556. |
[13] | 陆嘉伟, 张卓然, 李进才, 孔祥浩. 电推进飞机移相双绕组永磁电机特性分析[J]. 航空学报, 2022, 43(5): 325230-325230. |
[14] | 高华敏, 张卓然, 王晨, 薛涵, 刘业. 电推进飞机新型高功率密度轴向磁场永磁电机对比与分析[J]. 航空学报, 2022, 43(5): 325229-325229. |
[15] | 宗建安, 朱炳杰, 侯中喜, 杨希祥. 固旋翼垂直起降混电飞行器推进系统设计[J]. 航空学报, 2022, 43(5): 225395-225395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学