[1] STRAWN R C, CARADONNA F X, DUQUE E P N. 30 years of rotorcraft computational fluid dynamics research and development[J]. Journal of the American Helicopter Society, 2006, 51(1):5-21. [2] CORONADOL P, VELEZ C, ILIE M, et al. High angle of attack helicopter blade-vortex interaction; numerical studies using LES:AIAA-2011-0055[R]. Reston, VA:AIAA, 2011. [3] MEDIDA S, BAEDER J D. Numerical investigation of 3-D dynamic stall using delayed detached eddy simulation:AIAA-2012-0099[R]. Reston, VA:AIAA, 2012. [4] BAI J Q, WANG B, SUN Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. Acta Aerodynamica Sinica, 2012, 30(3):373-379. [5] DECK S, LUCKRING J M. Zonal detached eddy simulation (ZDES) of the flow around the AVT-183 diamond wing configuration[J]. Aerospace Science And Technology, 2016, 57:43-51. [6] ZHANG Y, ZHANG L P, HE X, et al. Detached-eddy simulation of subsonic flow past a delta wing[J]. Procedia Engineering, 2015, 126:584-587. [7] CUMMINGS R M, SCHUTTE A. Detached-eddy simulation of the vortical flow field about the VFE-2 delta wing[J]. Aerospace Science and Technology, 2013, 24:66-76. [8] SPALART P R, STRELETS H, ALLMARAS S R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference on DNS/LES, 1997. [9] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195. [10] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202. [11] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649. [12] JAIN R, POTSDAM M A. Hover predictions on the Sikorsky S-76 rotor using Helios:AIAA-2014-0207[R]. Reston, VA:AIAA, 2014. [13] YOON S, CHADERJIAN N M, PULLIAM T H, et al. Effect of turbulence modeling on hovering rotor flows:AIAA-2015-2766[R]. Reston, VA:AIAA, 2015. [14] JAIN R. A comparison of CFD hover predictions for the Sikorsky S-76 Rotor:AIAA-2016-0032[R]. Reston, VA:AIAA, 2016. [15] SHENG C H, ZHAO Q Y, HILL M. Investigations of XV-15 rotor hover performance and flow field using U2NCLE and HELIOS codes:AIAA-2016-0303[R]. Reston, VA:AIAA, 2016. [16] YOON S, CHAN W M, PULLIAM T H. Computations of torque-balanced coaxial rotor flows:AIAA-2017-0052[R]. Reston, VA:AIAA, 2017. [17] 吴琪, 招启军, 赵国庆, 等. 基于隐式算法的悬停旋翼黏性绕流高效CFD分析方法[J]. 空气动力学学报, 2015, 33(4):454-463. WU Q, ZHAO Q J, ZHAO G Q, et al. Highly-efficient CFD calculations on viscous flow of hovering rotor based on the implicit algorithm[J]. Acta Aerodynamica Sinica, 2015, 33(4):454-463(in Chinese). [18] 叶舟, 徐国华, 史勇杰. 直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 2015, 36(9):2874-2883. YE Z, XU G H, SHI Y J. Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2874-2883(in Chinese). [19] 罗东明, 陈平剑, 吴希明. GMRES算法在悬停旋翼数值模拟中的应用[J]. 空气动力学学报, 2012, 30(4):471-476. LUO D M, CHEN P J, WU X M. Application of GMRES algorithm to hovering rotor simulation[J]. Acta Aerodynamica Sinica, 2012, 30(4):471-476(in Chinese). [20] 曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报, 2012, 38(5):641-647. CAO D, CAO Y H. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5):641-647(in Chinese). [21] 叶靓, 招启军, 徐国华. 一种适合于旋翼涡流场计算的非结构自适应嵌套网格方法[J]. 空气动力学学报, 2010, 28(3):261-266. YE L, ZHAO Q J, XU G H. An adaptive unstructured embedded mesh methodology suitable for the calculation on the rotor vortex flowfield[J]. Acta Aerodynamica Sinica, 2010, 28(3):261-266(in Chinese). [22] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992. [23] JAMESON A. Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston, VA:AIAA, 1991. [24] LUO H, BAUM J D. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids:AIAA-1999-3315[R]. Reston, VA:AIAA, 1999. [25] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [26] FRINK N T. Recent progress toward a three-dimensional unstructured Navier-Stokes flow solver:AIAA-1994-0061[R]. Reston, VA:AIAA, 1994. [27] KARYPIS G, KUMAR V. METIS unstructured graph partitioning and sparse matrix ordering system version 2.0[M]. Mineapolis:University of Minnesota, 1995. [28] STOLL P, GERLINGER P, BRUGGEMANN D. Domain decomposition for an implicit LU-SGS scheme using overlapping grids:AIAA-1997-1896[R]. Reston, VA:AIAA, 1997. [29] PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angels of attack including stall:NASA TM-4632[R]. Washington, D. C.:NASA, 1994. [30] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover[J]. Vertica, 1981, 5(1):149-161. [31] 唐正飞, 李锋, 高正, 等. 用三维激光多谱勒测速仪对共轴双旋翼悬停流场的测定[J]. 流体力学实验与测量, 1998, 12(1):81-87. TANG Z F, LI F, GAO Z, et al. Measurement of the coaxial-rotor flowfield in hovering using 3-D laser Doppler velocimeter[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(1):81-87(in Chinese). |