[1] ZHANG L, ZHANG K Y, WANG L. Experimental study of three-dimensional sidewall compression inlet designed on wall Mach number linear distribution curved surface compression system:AIAA-2015-3669[R]. Reston:AIAA, 2015.
[2] LI Y Q, YOU Y C, HAN W Q, et al. An innovative integration concept for forebody and two-dimensional hypersonic inlet with controllable wall pressure distribution:AIAA-2015-3592[R]. Reston:AIAA, 2015.
[3] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flow paths for hydrogen fueled space access vehicle:AIAA-2003-4407[R]. Reston:AIAA, 2003.
[4] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[5] ZHANG K Y. Research progress of hypersonic inlet inverse design based on curved shock compression system:AIAA-2015-3647[R]. Reston:AIAA, 2015.
[6] 朱呈祥, 黄国平, 尤延铖, 等. 内乘波式进气道与典型侧压式进气道的性能对比[J]. 推进技术, 2011, 32(2):151-158. ZHU C X, HUANG G P, YOU Y C, et al. Performance comparison between internal waverider inlet and typical sidewall compression inlet[J]. Journal of Propulsion Technology, 2011, 32(2):151-158 (in Chinese).
[7] MÖLDER S, SZPIRO J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8):1303-1304.
[8] OTTO S E, TREFNY C J, SLATER J W. Inward turning streamline-traced inlet design method for low-boom, low-drag applications:AIAA-2015-3700[R]. Reston:AIAA, 2015.
[9] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Power and Propulsion, 1999, 15(3):408-416.
[10] YANG S H, LIU W X, LE J L, et al. Experimental testing of a hypersonic inward turning inlet with water-drop like shape to circular shape transition:AIAA-2015-3620[R]. Reston:AIAA, 2015.
[11] MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4):913-920.
[12] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-0297[R]. Reston:AIAA, 2006.
[13] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑, 2009, 39(8):1483-1494. YOU Y C, LIANG D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. Science China Series E, 2009, 39(8):1483-1494 (in Chinese).
[14] YUE L J, XIAO Y B, CHEN L H, et al. Design of base flow for streamline-traced hypersonic inlet:AIAA-2009-7422[R]. Reston:AIAA, 2009.
[15] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道体化设计和性能分析[J]. 推进技术, 2012, 33(4):510-515. HE X Z, ZHOU Z, NI H L. Integrated designmethods and performance analysis of osculating inward turning cone waverider forebody inlet[J]. Journal of Propulsion and Power, 2012, 33(4):510-515 (in Chinese).
[16] 郭军亮, 黄国平, 尤延铖, 等. 改善内乘波式进气道出口均匀性的内收缩基本流场研究[J]. 宇航学报, 2009, 30(5):1934-1940. GUO J L, HUANG G P, YOU Y C, et al. Study of internal compression flow field for improving the outflow uniformity of internal wave rider inlet[J]. Journal of Astronautics, 2009, 30(5):1934-1940 (in Chinese).
[17] SABEAN J W, LEWIS M J. Computational optimization of a hypersonic rectangular-to-circular inlet[J]. Journal of Propulsion and Power, 2001, 17(3):571-578.
[18] 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及实验研究[J]. 航空学报, 2011, 32(6):988-996. NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):988-996 (in Chinese).
[19] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11):2484-2491. LI Y Z, ZHANG K Y, NAN X J. Design concept of controllable Mach number distribution hypersonic inward turning inlets[J]. Journal of Aerospace Power, 2012, 27(11):2484-2491 (in Chinese).
[20] 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3):563-570. LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield withbody and two incident curved shock controlled center waves[J]. Journal of Aerospace Power, 2015, 30(3):563-570 (in Chinese).
[21] MALO-MOLINA F J, GAITONDE D V, EBRAHIMI H B. Numerical investigation of a 3-D chemically reacting scramjet engineat high altitudes using JP8-air mixtures:AIAA-2005-1435[R]. Reston:AIAA, 2005.
[22] XIAO Y B, YUE L J, CHEN L H, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition:AIAA-2012-5978[R]. Reston:AIAA, 2012.
[23] WALKER S H, TANG M, MORRIS S, et al. Falcon HTV-3X -a reusable hypersonic test bed:AIAA-2008-2544[R]. Reston:AIAA, 2008.
[24] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8):1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426 (in Chinese).
[25] TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths:AIAA-2008-2635[R]. Reston:AIAA, 2008.
[26] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008:27-30. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008:27-30 (in Chinese). |