[1] 何友, 王国宏, 关欣, 等. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:1-15. HE Y, WANG G H, GUAN X, et al. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:1-15 (in Chinese).
[2] CHEN M S, HAN J, YU P S. Data mining:An overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 8(6):866-883.
[3] HAN J, KAMBER M. Data mining:Concepts and techniques[M]. San Francisco:Morgan Kaufmann, 2001:1-18.
[4] ZHENG Y. Trajectory data mining:An overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3):1-41.
[5] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection:A survey[J]. ACM Computing Surveys, 2009, 41(3):1-58.
[6] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection for discrete sequences:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(99):1-16.
[7] BARNETT V, LEWIS T. Outliers in statistical data[M]. New York:Wiley, 1994:24-26.
[8] KNORR E M, NG R T, TUCAKOV V. Distance-based outliers:Algorithms and applications[J]. International Journal on Very Large Data Bases, 2000, 8(3):237-253.
[9] JIN W, TUNG A K H, HAN J, et al. Ranking outliers using symmetric neighborhood relationship[J]. Lecture Notes in Computer Science, 2006, 3918:577-593.
[10] STRUYF A, ROUSSEEUW P J. High-dimensional computation of the deepest location[J]. Computational Statistics and Data Analysis, 2000, 34:415-426.
[11] SARAWAGI S, AGRAWAL R, MEGIDDO N. Discovery driven exploration of OLAP data cubes[M]. Berlin:Springer, 1998:67-69.
[12] KNORR E M, NG R T. Algorithms for mining distanced-based outliers in large datasets[C]//Proceedings of 24th International Conference on Very Large Data Bases. New York:Morgan Kaufmann, 1998:392-403.
[13] LI X, HAN J, KIM S. Motion-Alert:Automatic anomaly detection in massive moving objects[C]//IEEE International Conference on Intelligence and Security Informatics. Piscataway, NJ:IEEE Press, 2006:166-177.
[14] LI X, HAN J, KIM S, et al. ROAM:Rule-based and motif-based anomaly detection in massive moving object data sets[C]//Proceedings of 7th SIAM International Conference on Data Mining. Philadelphia:SIAM Press, 2007:273-284.
[15] LEE J G, HAN J, LI X. Trajectory outlier detection:A partition-and-detect framework[C]//Proceedings of 24th International Conference on Data Engineering. Washington, D.C.:IEEE Computer Society, 2008:140-149.
[16] 刘良旭, 乔少杰, 刘宾, 等. 基于R-Tree的高效异常轨迹检测算法[J]. 软件学报, 2009, 20(9):2426-2435. LIU L X, QIAO S J, LIU B, et al. Efficient trajectory outlier detection algorithm based on R-Tree[J]. Journal of Software, 2009, 20(9):2426-2435 (in Chinese).
[17] YANG A, TAN X, BAEK J, et al. A new ADS-B authentication framework based on efficient hierarchical identity-based signature with batch verification[J]. IEEE Transactions on Services Computing, 1939, PP(99):1.
[18] 沈笑云, 唐鹏, 张思远, 等. ADS-B统计数据的位置导航不确定类别质量分析[J]. 航空学报, 2015, 36(9):3128-3136. SHEN X Y, TANG P, ZHANG S Y, et al. Quality analysis of navigation uncertain category for position based on ADS-B statistical data[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3128-3136 (in Chinese).
[19] HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W A. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.
[20] GAO Y, LEUNG M K H. Line segment Hausdorff distance on face matching[J]. Pattern Recognition, 2002, 35(2):361-371.
[21] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:Identifying density-based local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data, 2000, 29(2):93-104.
[22] JANSSENS J, POSTMA E. One-class classification with LOF and LOCI:An empirical comparison[C]//Proceedings of the 18th Belgian-Dutch Conference on Machine Learning, 2009:1021-1040.
[23] PICIARELLI C, MICHELONI C, FORESTI G. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11):1544-1554.
[24] LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1158-1173. |