[1] HUANG P F, CAI J, MENG Z J, et al. Novel method of monocular real-time feature point tracking for tethered space robots[J]. Journal of Aerospace Engineering, 2014, 27(6):04014039.
[2] 徐文福, 梁斌, 李成, 等. 空间机器人捕获非合作目标的测量与规划方法[J]. 机器人, 2010, 32(1):61-69. XU W F, LIANG B, LI C, et al. Measurement and planning approach of space robot for capturing non-cooperative target[J]. Robot, 2010, 32(1):61-69(in Chinese).
[3] WONG S K. Non-cooperative target recognition in the frequency domain[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2):77-84.
[4] RAMIREZ V A, GUTIERREZ S A M, YANEZ R E S. Quadrilateral detection using genetic algorithms[J]. Computacióny Sistemas, 2011, 15(2):181-193.
[5] 史骏, 姜志国, 冯昊, 等. 基于弹性网稀疏编码的空间目标识别[J]. 航空学报, 2013, 34(5):1129-1139. SHI J, JIANG Z G, FENG H, et al. Elastic net sparse coding-based space object recognition[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1129-1139(in Chinese).
[6] CAI J, HUANG P F, WANG D K. Novel dynamic template matching of visual servoing for tethered space robot[C]//2014 4th IEEE International Conference on Information Science and Technology(ICIST). Piscataway, NJ:IEEE Press, 2014:389-392.
[7] 徐贵力, 徐静, 王彪, 等. 基于光照模糊相似融合不变矩的航天器目标识别[J]. 航空学报, 2014, 35(3):857-867. XU G L, XU J, WANG B, et al. CIBA moment invariants and their use in spacecraft recognition algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):857-867(in Chinese).
[8] 李予蜀, 余农, 吴常泳, 等. 红外航空图像自动目标识别的形态滤波神经网络算法[J]. 航空学报, 2002, 23(4):368-372. LI Y S, YU N, WU C Y, et al. Morphological neural networks with applications to automatic target recognition in aeronautics infrared image[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4):368-372(in Chinese).
[9] 黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 36(6):1225-1240. HUANG K Q, REN W Q, TAN T N. A review on image classification and detection[J]. Chines Journal of Computers, 2014, 36(6):1225-1240(in Chinese).
[10] ZITNICK C L, DOLLÁR P. Edgebox:Locating object proposals from edges[C]//Computer vision-ECCV 2014. Zurich:Springer International Publishing, 2014:391-405.
[11] HEITZ G, KOLLER D. Learning spatial context:Using stuff to find things[C]//Computer vision-ECCV 2008. Marseille:Springer, 2008:30-43.
[12] YANULEVSKAYA V, UIJLINGS J, GEUSEBROEK J M. Salient object detection:From pixels to segments[J]. Image and Vision Computing, 2013, 31(1):31-42.
[13] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2189-2202.
[14] RAHTU E, KANNALA J, BLASCHKO M. Learning a category independent object detection cascade[C]//2011 IEEE International Conference on Computer Vision(ICCV). Piscataway, NJ:IEEE Press, 2011:1052-1059.
[15] CHENG M M, ZHANG Z M, LIN W Y, et al. BING:Binarized normed gradients for objectness estimation at 300fps[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ:IEEE Press, 2014.
[16] ZHANG Z, WARRELL J, TORR P H S. Proposal generation for object detection using cascaded ranking SVMs[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ:IEEE Press, 2011:1497-1504.
[17] EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al. The pascal visual object classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
[18] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2005, 1:886-893.
[19] DALAL N. Finding people in images and videos[D]. Grenoble:Institut National Polytechnique de Grenoble-INPG, 2006:33-50.
[20] UIJLINGS J, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
[21] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 1999, 2:1150-1157.
[22] JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition?[C]//2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2009:2146-2153. |