[1] LIU X Z, ZHU R B, ANJUM A, et al. Intelligent data fusion algorithm based on hybrid delay-aware adaptive clustering in wireless sensor networks[J]. Future Generation Computer Systems, 2020, 104:1-14. [2] MAO Y, YANG Y, HU Y X. Research into a multi-variate surveillance data fusion processing algorithm[J]. Sensors (Basel, Switzerland), 2019, 19(22):4975. [3] ZHAO G Z, CHEN A G, LU G X, et al. Data fusion algorithm based on fuzzy sets and D-S theory of evidence[J]. Tsinghua Science and Technology, 2020, 25(1):12-19. [4] BOLOURCHI P, MORADI M, DEMIREL H, et al. Improved SAR target recognition by selecting moment methods based on Fisher score[J]. Signal, Image and Video Processing, 2020, 14(1):39-47. [5] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6):15-20. LI D Y, MENG H J, SHI X M. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development, 1995, 32(6):15-20(in Chinese). [6] PENG H G, ZHANG H Y, WANG J Q, et al. An uncertain Z-number multicriteria group decision-making method with cloud models[J]. Information Sciences, 2019, 501:136-154. [7] 嵇慧明, 于昊, 宋帅, 等. 基于改进粗糙集-云模型理论的空战态势评估[J]. 战术导弹技术, 2019(4):20-27. JI H M, YU H, SONG S, et al. Air combat situation assessment based on improved rough set-cloud model theory[J]. Tactical Missile Technology, 2019(4):20-27(in Chinese). [8] YAN F, XU K L, CUI Z K, et al. An improved layer of protection analysis based on a cloud model:Methodology and case study[J]. Journal of Loss Prevention in the Process Industries, 2017, 48:41-47. [9] 王双川, 贾希胜, 胡起伟, 等. 基于正态灰云模型的装备维修保障系统效能评估[J]. 系统工程与电子技术, 2019, 41(7):1576-1582. WANG S C, JIA X S, HU Q W, et al. Effectiveness evaluation for equipment maintenance support system based on normal grey cloud model[J]. Systems Engineering and Electronics, 2019, 41(7):1576-1582(in Chinese). [10] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2):325-339. [11] SHAFER G. A mathematical theory of evidence[M]. Princeton:Princeton University Press, 1976. [12] XIAO F Y. A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion[J]. Information Sciences, 2020, 514:462-483. [13] 董彦佼, 韩元杰, 刘洁莉. D-S证据理论在多传感器目标识别中的改进[J]. 弹箭与制导学报, 2009, 29(4):220-222. DONG Y J, HAN Y J, LIU J L. Improvement of D-S theory evidence in multi-sensor target identification system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(4):220-222(in Chinese). [14] FAN W T, XIAO F Y. A new conflict management in evidence theory based on DEMATEL method[J]. Journal of Sensors, 2019, 2019:7145373. [15] SILVA L G D O, DE ALMEIDA-FILHO A T. A new PROMETHEE-based approach applied within a framework for conflict analysis in evidence theory integrating three conflict measures[J]. Expert Systems with Applications, 2018, 113:223-232. [16] JIROUŠEK R, SHENOY P P. A new definition of entropy of belief functions in the Dempster-Shafer theory[J]. International Journal of Approximate Reasoning, 2018, 92:49-65. [17] ZHAO J, XUE R, DONG Z N, et al. Evaluating the reliability of sources of evidence with a two-perspective approach in classification problems based on evidence theory[J]. Information Sciences, 2020, 507:313-338. [18] DE LIU P, ZHANG X H. A new hesitant fuzzy linguistic approach for multiple attribute decision making based on Dempster-Shafer evidence theory[J]. Applied Soft Computing, 2020, 86:105897. [19] MA W J, JIANG Y C, LUO X D. A flexible rule for evidential combination in Dempster-Shafer theory of evidence[J]. Applied Soft Computing, 2019, 85:105512. [20] XIAO F Y. A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion[J]. Information Sciences, 2020, 514:462-483. [21] YANG Y, HAN D Q, DEZERT J. A new non-specificity measure in evidence theory based on belief intervals[J]. Chinese Journal of Aeronautics, 2016, 29(3):704-713. [22] JOUSSELME A L, GRENIER D, BOSSÉ É. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2):91-101. [23] LIU W R. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence, 2006, 170(11):909-924. [24] 蒋雯, 邓鑫洋. D-S证据理论信息建模与应用[M]. 北京:科学出版社, 2018:10-12. JIANG W, DENG X Y. Modeling and application of evidence theory information[M]. Beijing:Science Press, 2018:10-12(in Chinese). [25] 魏永超. 基于K-L距离的改进D-S证据合成方法[J]. 电讯技术, 2011, 51(1):27-30. WEI Y C. An improved D-S evidence combination method based on K-L distance[J]. Telecommunication Engineering, 2011, 51(1):27-30(in Chinese). [26] 张兵, 卢焕章. 多传感器自动目标识别中的冲突证据组合方法[J]. 系统工程与电子技术, 2006, 28(6):857-860. ZHANG B, LU H Z. Combination method of conflict evidence in multi-sensor automatic target recognition[J]. Systems Engineering and Electronics, 2006, 28(6):857-860(in Chinese). [27] 梁旭荣, 姚佩阳, 梁德磊. 改进的证据组合规则及其在融合目标识别中的应用[J]. 电光与控制, 2008, 15(12):37-41. LIANG X R, YAO P Y, LIANG D L. Improved combination rule of evidence theory and its application in fused target recognition[J]. Electronics Optics & Control, 2008, 15(12):37-41(in Chinese). [28] 毕文豪, 张安, 李冲. 基于新的证据冲突衡量的加权证据融合方法[J]. 控制与决策, 2016, 31(1):73-78. BI W H, ZHANG A, LI C. Weighted evidence combination method based on new evidence conflict measurement approach[J]. Control and Decision, 2016, 31(1):73-78(in Chinese). |