[1] Dana W. The X-15 airplane-lessons learned, AIAA-1993-0309[R]. Resten: AIAA, 1993.
[2] Spain C, Soistmann D, Parker E. et al. An overview of selected NASP aeroelastic studies at the NASA Langley research center, AIAA-1990-5218[R]. Reston: AIAA, 1990.
[3] Walkers S, Rodgers F. Falcon hypersonic technology overview, AIAA-2005-3253[R]. Reston: AIAA, 2005.
[4] Peebles C. The X-43 flight research program: lessons learned on the road to Mach 10[M]. Reston: AIAA Inc., 2007: 3-31.
[5] Yang C, Xu Y, Xie C C. Review of studies of aeroelastic of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[6] Tang S, Zhu Q J. Research progresses of flight dynamics modeling of airbreathing hypersonic flight vehicle[J]. Advances in Mechanics, 2011, 41(2): 187-200 (in Chinese). 唐硕, 祝强军. 吸气式高超声速飞行器动力学建模研究进展[J]. 力学进展, 2011, 41(2): 187-200.
[7] Chavez F R, Schmidt D K. An integrated analysis aeropropulsive/aeroelastic model for the dynamic analysis of hypersonic vehicles, AIAA-1992-4567[R]. Reston: AIAA, 1992.
[8] Schmidt D K. Dynamics and control of hypersonic aeropropulsive/aeroelastic vehicles, AIAA-1992-5326[R]. Reston: AIAA, 1992.
[9] Chavez F R, Schmidt D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1308-1319.
[10] Bolender M A, Doman D B. Modeling unsteady heating effects on the structural dynamics of a hypersonic vehicle, AIAA-2006-6646[R]. Reston: AIAA, 2006.
[11] Bolender M A, Doman D B. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle, AIAA-2005-6255[R]. Reston: AIAA, 2005.
[12] Li J L, Tang Q G, Feng Z W, et al. Modeling and analysis of a hypersonic vehicle with aeroelastic effect[J]. Journal of National University of Defense Technology, 2013, 35(1): 7-11 (in Chinese). 李建林, 唐乾刚, 丰志伟, 等.气动弹性影响下高超声速飞行器动力学建模与分析[J]. 国防科学技术大学学报, 2013, 35(1): 7-11.
[13] Fiorentini L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Ohio: The Ohio State University, 2010.
[14] Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions, AIAA-2003-7081[R]. Reston: AIAA, 2003.
[15] Thuruthimattam B J, Friedmann P P, McNamara J J, et al. Modeling approaches to hypersonic aerothermoelasticity with application to reusable launch vehicles, AIAA-2003-1967[R]. Reston: AIAA, 2003.
[16] Mirmirani M, Wu C, Clark A, et al. Modeling for control of a generic air-breathing hypersonic vehicle, AIAA-2005-6256[R]. Reston: AIAA, 2005.
[17] Stewart M, Suresh A, Liou M, et al. Multidisciplinary analysis of a hypersonic engine, AIAA-2002-5127[R]. Reston: AIAA, 2002.
[18] McNamara J J, Friedmann P P. Aeroelastic and aeroth-ermoelastic analysis of hypersonic vehicles: current status and future trends, AIAA-2007-2013[R]. Reston: AIAA, 2007.
[19] Williams T, Bolender M A. An aerothermal flexible mode analysis of a hypersonic vehicle, AIAA-2006-6647[R]. Reston: AIAA, 2006.
[20] Saad M A. Compressible fluid flow[M]. New Jersey: Prentice-hall INC, 1985: 295-304.
[21] Shih P K, Prunty J, Mueller R N. Thermostructural concepts for hypervelocity vehicles[J]. Journal of Aircraft, 1991, 28(5): 337-345.
[22] Sun J, Liu W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1622-1628 (in Chinese). 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9): 1622-1628.
[23] Eckert E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the ASME, 1956,78(6): 1273-1283.
[24] Sachs G. Longitudinal long-term modes in super-hypersonic flight[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 539-541. |