[1] Wie B, Bailey D, Heiberg C. Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 96-104.
[2] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.
[3] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 957-963.
[4] Hu Q L, Xiao B, Friswell M I. Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation[J]. Control Theory & Applications, IET, 2011, 5(2): 271-282.
[5] Cai W, Liao X, Song D Y. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1456-1463.
[6] Lu K, Xia Y , Fu M. Controller design for rigid spacecraft attitude tracking with actuator saturation[J]. Information Sciences, 2013, 220: 343-366.
[7] Hu Q L, Jiang B Y, Shi Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 249-258 (in Chinese). 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报,2014,35(1): 249-258.
[8] Hu Q L, Jiang B Y, Friswell M I. Robust saturated finite time output feedback attitude stabilization for rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1914-1929.
[9] Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 254-259.
[10] Hu Q L, Xiao B, Wang D, et al. Attitude control of spacecraft with actuator uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1771-1776.
[11] Zhou B, Duan G R, Lin Z L. A parametric Lyapunov equation approach to the design of low gain feedback[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1548-1554.
[12] Dong C, Chao T, Wang S Y, et al. Terminal guidance method with multiple constraints in the presence of disturbances and control saturation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2225-2233 (in Chinese). 董晨, 晁涛, 王松艳, 等. 考虑扰动及控制饱和的多约束末制导方法[J]. 航空学报, 2014, 35(8): 2225-2233.
[13] Cong B, Liu X, Chen Z, et al. Time-varying sliding mode control for spacecraft attitude maneuver with angular velocity constraint[C]// Proceedings of 2011 Chinese Control and Decision Conference. Piscataway, NJ: IEEE, 2011: 670-674.
[14] Hu Q L. Robust adaptive backstepping attitude and vibration control with L-2 gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of Sound and Vibration, 2009, 327(3): 285-298.
[15] Ngo K B, Mahony R, Jiang Z P. Integrator backstepping design for motion systems with velocity constraint[C]// Proceedings of 2004 5th Asian Control Conference. Piscataway, NJ: IEEE, 2004: 141-146.
[16] Hu Q L, Li B, Zhang Y M. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions, 2013, 52(4): 480-493.
[17] Kristiansen R, Nicklasson P J, Gravdahl J T. Satellite attitude control by quaternion-based backstepping[J]. IEEE Transactions on Control Systems Technology, 2009, 17(1): 227-232.
[18] James R F. Passivity-based attitude control on the special orthogonal group of rigid-body rotations[J]. Journal of Guidance, Control and Dynamics, 2013, 36(6): 1596-1605.
[19] Lee T. Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers[J]. Systems & Control Letters, 2012, 61(1): 231-237.
[20] Cui H T, Cheng X J. Anti-unwinding attitude maneuver control of spacecraft considering bounded disturbance and input saturation [J]. Science China: Technology Science, 2012, 42(9): 1004-1015 (in Chinese). 崔祜涛, 程小军. 考虑有界干扰和输入饱和的航天器姿态抗退绕机动控制[J]. 中国科学: 技术科学, 2012, 42(9): 1004-1015. |