Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (17): 28270-028270.doi: 10.7527/S1000-6893.2023.28270
• Reviews • Previous Articles Next Articles
Junliang DING(), Lili ZHAO, Tao YANG, Haini ZHANG, Xiaoxia SHEN
Received:
2022-11-15
Revised:
2022-12-08
Accepted:
2023-01-17
Online:
2023-09-15
Published:
2023-02-06
Contact:
Junliang DING
E-mail:dingjl@avic.com
Supported by:
CLC Number:
Junliang DING, Lili ZHAO, Tao YANG, Haini ZHANG, Xiaoxia SHEN. Flight test technology of natural icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28270-028270.
Table 1
Summary of airworthiness clauses involved in certification flight of C919 aircraft with natural icing
序号 | 科目 | 适航条款 |
---|---|---|
1 | 飞行品质 | 25.141 9,25.21(g) |
2 | 机翼防冰 | 25.130 1(a)(4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4(25.141 9(g)、(h)),M-6(a)、M-13 |
3 | 发动机 | 25.109 3(b)(1)(i),25.939(a)(c),25.901(b)(2),25.130 1(a4) |
4 | APU | 专用条件M-6(a),25.130 1(a)(4),APU25.152 7(由等效安全P-1引入),APU25.109 3(b)(1)(由等效安全P-1引入) |
5 | 短舱防冰 | 25.939,25.109 3(b)(1)(i),25.130 1(a4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4,M-6(a),M-13 |
6 | 风挡加温 | 25.773(b)(1)(ii),25.773(c),25.130 1(a4),25.135 3(a),25.141 9(b),25.143 1(c),专用条件M-4,M-6(a),M-9(d)(h) |
7 | 大气数据 | 25.130 1(a4),25.132 3(i),25.132 5(b),专用条件M-6(c),专用条件M-6(a),专用条件EE-3 |
8 | 结冰探测 | 25.130 1(a)(4),25.135 3(a),25.143 1(c),专用条件M-4(25.141 9(e)、(f)),专用条件M-6 (a),M-13,EE-3 |
9 | RAT释放 | 25.130 1(a4)、25.135 1(b1) (b6)、25.136 3(b)、25.170 7(b)、专用条件EE-1,M-2,M-6(a) |
1 | FAA. Aircraft icing handbook[M]. Lower Hutt: Civil Aviation Authority, 2000. |
2 | REEHORST A L, ADDY H E, COLANTONIO R O. Examination of icing induced loss of control and it’s mitigtions: AIAA-2010-8140 [R]. Reston: AIAA, 2010. |
3 | GURBACKI H M. Ice-induced unsteady flow field effects on airfoil performance[D]. Urbana: University of Illinois at Urbana-Champaign, 2003. |
4 | REEHORST A, CHUNG J, POTAPCZUK M, et al. Study of icing effects on performance and controllability of an accident aircraft[J]. Journal of Aircraft, 2000, 37(2): 253-259. |
5 | 李哲, 徐浩军, 薛源, 等. 结冰对飞机飞行安全的影响机理与防护研究[J].飞行力学, 2016, 34(4):10-14. |
LI Z, XU H J, XUE Y, et al. Study on the influence mechanism and protection of icing on aircraft flight safety [J]. Flight Mechanics, 2016, 34(4): 10-14 (in Chinese). | |
6 | GREEN S. A study of US inflight icing accidents and incidents, 1978 to 2002[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
7 | APPIAH-KUBI P, MARTOS B, ATUAHENE I, et al. U.S. inflight icing accidents and incidents, 2006 to 2010[C]∥Industrial & Systems Engineering Research Conference A Krishnamurthy & Wkv Chan. 2013. |
8 | 中国民用航空局. CCAR 25-R4: 中国民用航空规章第 25 部: 运输类飞机适航标准 [S]. 北京: 中国民用航空总局, 2011. |
Civil Aviation Administration of China. CCAR 25-R4: Civil Aviation Regulations of China Part 25: Airworthiness Standards for Transport Aircraft [S]. Beijing: General Administration of Civil Aviation of China, 2011 (in Chinese). | |
9 | FAA. FAR 25 airworthiness standards: Transport category airplanes [S].Washington, D.C.: FAA, 2017. |
10 | EASA. CS 25: Certification specifications and acceptable means of compliance for large aeroplanes [S]. Cologne: EASA, 2017. |
11 | FAA. Aircraft ice protection: AC 20-73A[R]. Washington, D.C: FAA, 2006. |
12 | FAA. Flight test guide for certification of transport category airplanes: AC 25-7C[R].Washington, D.C. : FAA, 2012. |
13 | FAA. Turbojet, turboprop, turboshaft, and turbofan engine induction system icing and ice ingestion: AC 20-147A[R]. Washington, D.C.: FAA, 2014. |
14 | FAA. Performance and handling characteristics in icing conditions: AC 25-25A[R]. Washington, D.C.: FAA, 2014. |
15 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-1A[R]. Washington, D.C.: FAA, 1999. |
16 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-2[R]. Washington, D.C.: FAA, 2009. |
17 | FAA. Performance and handling characteristics in icing conditions: AC 25-1419-2B[R].Washington, D.C.: FAA, 2009. |
18 | SHIN J, BOND T. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
19 | KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6): 257-345. |
20 | POTAPUZCK M G. Aircraft icing research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276. |
21 | TIRMIZI S H, GILL W N. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth[J]. Journal of Crystal Growth, 1989, 96(2): 277-292. |
22 | COOK D, COOK D. Unusual natural icing encounters during Boeing 777 flight tests[C]∥35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
23 | BERNSTEIN B, CAMPO W, ALGODAL L, et al. The embraer-170 and-190 natural icing flight campaigns: Keys to success[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
24 | 杨新亮. ARJ21-700飞机机翼防冰系统自然结冰试飞方法[J]. 飞行力学, 2014, 32(5): 460-463. |
YANG X L. ARJ21-700 aircraft WAI natural icing flight test approach[J]. Flight Dynamics, 2014, 32(5): 460-463 (in Chinese). | |
25 | SHAW R J. NASA’s aircraft icing analysis program: NASA TM-88791 [R]. Washington, D.C.: NASA, 1986. |
26 | RATVASKY T, VAN ZANTE J, RILEY J. NASA/FAA tailplane icing program overview[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
27 | MILLER D, BERNSTEIN B, MCDONOUGH B, et al. NASA/FAA/NCAR supercooled large droplet icing flight research-Summary of winter 96-97 flight operations[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
28 | BRAGG M B. Experimental aerodynamic characteristics of an NACA 0012 airfoil with simulated glaze ice[J]. Journal of Aircraft, 1988, 25(9): 849-854. |
29 | BROEREN A P, POTAPCZUK M, RILEY J, et al. Swept-wing ice accretion characterization and aerodynamics[C]∥Proceedings of the 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013. |
30 | LIBBRECHT K G. Physical dynamics of ice crystal growth[J]. Annual Review of Materials Research, 2017, 47: 271-295. |
31 | FILIP G, MAKI K. Evaluation of advanced turbulence models for high-Reynolds number external flow: Technical Report Number 354 [R]. Ann Arbor: The University of Michigan, 2015. |
32 | BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4): 1226-1234. |
33 | GREGORY N, O'REILLY C. Low-speed aerodynamic characteristics of NACA 0012 aerofoil sections, including the effects of upper-surface roughness simulation hoar frost[J]. Arc R & M, 1970. DOI:10.1002/chin.199248228 . |
34 | VAN ZANTE J F, RATVASKY T P, BENCIC T J, et al. Update on the NASA Glenn propulsion systems lab icing and ice crystal cloud characterization-2017[C]∥ Proceedings of the 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
35 | LERAY W M. We freeze to please: A history of NASA’s icing research tunnel and the quest for flight safety: NASA SP-2002-4226 [R]. Washington, D.C.: NASA, 2002. |
36 | EASA. Certification specifications and acceptable means of compliance for large aeroplanes CS-25 [R]. Cologne: European Aviation Safety Agency, 2015. |
37 | LEROY D, FONTAINE E, SCHWARZENBOECK A, et al. HAIC/HIWC field campaign - specific findings on PSD microphysics in high IWC regions from in situ measurements: Median mass diameters, particle size distribution characteristics and ice crystal shapes[C]∥SAE International Conference on Icing of Aircraft, Engines, and Structures. 2015. |
38 | HARRAH S, STRICKLAND J, HUNT P, et al. Radar detection of high concentrations of ice particles-methodology and preliminary flight test results[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2019. |
39 | ASHLIE F. Ice crystal icing investigation on a honeywell uncertified research engine in an altititude simulation icing facility: ASME GT2020-14714 [R]. New York: ASME, 2020. |
40 | VAN ZANTE J F, RATVASKY T P, BENCIC T J, et al. Update on the NASA Glenn propulsion systems lab icing and ice crystal cloud characterization - 2017[C]∥ Proceedings of the 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
41 | KING M C, MANIN J, ZANTE J F V. Particle size calibration testing in the NASA propulsion systems laboratory: AIAA-2018-3971 [R]. Reston: AIAA, 2018. |
42 | von HARDENBERG P H. Analysis of 2018 aerothermal calibration test at NASA propulsion systems laboratory: NASA/TM-20205008430 [R]. Washington, D.C.: NASA, 2020. |
43 | AGUI J H, VON HARDENBERG P, STRUK P M, et al. Cloud uniformity measurement from NASA’s 2nd fundamental ice crystal icing test-part 2 (temperature & humidity): AIAA-2020-2841 [R]. Reston: AIAA, 2020. |
44 | CHEN R C, STRUK P M, RATVASKY T P. Cloud uniformity measurement from NASA’s 2nd fundamental ice crystal icing test part 1 (water content & PSD) : AIAA-2020-2840 [R]. Reston: AIAA, 2020. |
45 | BARTKUS T. Plans for ice crystal icing tests using a 3D heated test article at the NASA icing research tunnel[C]∥2021 AIAA Aviation Forum and Exposition. Reston: AIAA, 2021. |
46 | 常士楠, 韩凤华. 飞机发动机进气道前缘热气防冰器性能分析[J]. 北京航空航天大学学报, 1999, 25(2): 201-203. |
CHANG S N, HAN F H. Performance analysis on hot air anti icer of airplane engine inlet[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 201-203 (in Chinese). | |
47 | 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. |
YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 173-176 (in Chinese). | |
48 | 吴佩佩, 朱春玲, 刘文平, 等. 过冷大水滴条件下机翼结冰数值仿真[J]. 计算机仿真, 2014, 31(9): 51-55. |
WU P P, ZHU C L, LIU W P, et al. Numerical simulation of aircraft icing under supercooled large droplet conditions[J]. Computer Simulation, 2014, 31(9): 51-55 (in Chinese). | |
49 | 周志宏, 易贤, 郭龙, 等. 一种结冰外形相似度评估方法[J]. 空气动力学学报, 2016, 34(5): 556-561. |
ZHOU Z H, YI X, GUO L, et al. Quantitative method for ice accretions comparison[J]. Acta Aerodynamica Sinica, 2016, 34(5): 556-561 (in Chinese). | |
50 | 卜雪琴, 林贵平. 基于CFD的水收集系数及防冰表面温度预测[J]. 北京航空航天大学学报, 2007, 33(10): 1182-1185. |
BU X Q, LIN G P. Predictions of collection efficiency and anti-icing surface temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1182-1185 (in Chinese). | |
51 | 张强, 胡利, 曹义华. 过冷水滴撞击三维机翼的数值模拟[J]. 航空动力学报, 2009, 24(6): 1345-1350. |
ZHANG Q, HU L, CAO Y H. Three-dimensional numerical simulation of supercooled droplets impinging on a wing[J]. Journal of Aerospace Power, 2009, 24(6): 1345-1350 (in Chinese). | |
52 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 107-122 (in Chinese). | |
53 | 彭锦峰, 吴东润, 崔为运, 等. 3D打印夹芯复合材料模拟冰型设计与分析[J]. 航空学报, 2021, 42(9): 224536. |
PENG J F, WU D R, CUI W Y, et al. Design and analysis of simulated ice with 3D printed sandwich composite material[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224536 (in Chinese). | |
54 | 刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. |
LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041 (in Chinese). | |
55 | 韩志熔, 赵克良, 颜巍. 格尼襟翼在冰风洞混合翼设计中的应用[J]. 航空学报, 2019, 40(2): 522387. |
HAN Z R, ZHAO K L, YAN W. Application of Gurney flap in hybrid-wing design for icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522387 (in Chinese). | |
56 | LANICCI J, HALPERIN D, SHAPPELL S, et al. General aviation weather encounter case studies [S]. Washington, D.C.: FAA, 2012. |
57 | Hacker P T, Dorsch R G. A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice protection equipment[J]. Technical Report Archive & Image Library, 1951, 15(1260): 633-634. |
58 | CORNELL C D, DONAHUE C A, KEITH C. A comparison of aircraft icing forecast models: AFCCC/TN-95/004 [R]. Oklahoma: Air Force Combat Climatology Center Scott AFB IL, 1995. |
59 | POLITOVICH M, SAND W. A proposed icing severity index based upon meteorology[C]∥4th International Conference on Aviation Weather Systems. 1991: 157-162. |
60 | THOMPSON G, BRUINTJES R T, BROWN B G, et al. Intercomparison of in-flight icing algorithms. part I: WISP94 real-time icing prediction and evaluation program[J]. Weather and Forecasting, 1997, 12(4): 878-889. |
61 | FORBES G S, HU Y, BROWN B G, et al. Examination of conditions in the proximity of pilot reports of aircraft icing during STORM-FEST[C]∥5th International Conference on Aviation Weather Systems. 1993: 282-286 |
62 | MCDONOUGH F, BERNSTEIN B, POLITOVICH M, et al. The forecast icing potential algorithm[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
63 | BERNSTEIN B C, MCDONOUGH F, POLITOVICH M K, et al. Current icing potential: algorithm description and comparison with aircraft observations[J]. Journal of Applied Meteorology, 2005, 44(7): 969-986. |
64 | FERNÁNDEZ-GONZÁLEZ S, SÁNCHEZ J L, GASCÓN E, et al. Weather features associated with aircraft icing conditions: A case study[J]. The Scientific World Journal, 2014, 2014: 1-18. |
65 | MERINO A, GARCÍA-ORTEGA E, FERNÁNDEZ-GONZÁLEZ S, et al. Aircraft icing: In-cloud measurements and sensitivity to physical parameterizations[J]. Geophysical Research Letters, 2019, 46(20): 11559-11567. |
66 | LAWSON P, GURGANUS C, WOODS S, et al. Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: implications for a “new” secondary ice process[J]. Journal of the Atmospheric Sciences, 2017, 74(9): 2899-2920. |
67 | COLGAN W, ARENSON L U. Open-pit glacier ice excavation: brief review[J]. Journal of Cold Regions Engineering, 2013, 27(4): 223-243. |
68 | 黄仪方, 朱志愚. 航空气象[M]. 成都: 西南交通大学出版社, 2002. |
HUANG Y F, ZHU Z Y. Aviation meteorology [M]. Chengdu: Southwest Jiaotong University Press, 2002 (in Chinese). | |
69 | 刘开宇, 梁爱民, 高勇. 特大冰雪天气下一次飞机强积冰的数值模拟试验[C]∥中国气象学会年会. 2009. |
LIU K Y, LIANG A M, GAO Y. Numerical simulation test of an aircraft icing in extremely heavy snow and ice weather [C]∥Annual meeting of China Meteorological Society. 2009. | |
70 | POLITOVICH M, WOLFF C, MCDONOUGH F, et al. Potential upgrades to the current and forecast icing algorithms[C]∥Proceedings of the AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010. |
71 | 李佰平, 戴建华, 孙敏, 等. 一种改进的飞机自然结冰潜势算法研究[J]. 气象, 2018, 44(11): 1377-1390. |
LI B P, DAI J H, SUN M, et al. An improved aircraft natural icing potential algorithm[J]. Meteorological Monthly, 2018, 44(11): 1377-1390 (in Chinese). | |
72 | BRAGG M B. Rime ice accretion and its effect on airfoil performance[D]. Columbu: The Ohio State University, 1981. |
73 | JANJUA Z A. The influence of freezing and ambient temperature on the adhesion strength of ice[J]. Cold Regions Science and Technology, 2017, 140: 14-19. |
74 | SCAVUZZO R J, CHU M L, KELLACKEY C J. Impact ice stresses in rotating airfoils[J]. Journal of Aircraft, 1991, 28(7): 450-455. |
75 | SCHULSON E M. The structure and mechanical behavior of ice[J]. The Journal of the Minerals, Metals & Materials Society, 1999, 51(2): 21-27. |
76 | SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Kinetics and morphology of nonequilibrium growth of ice in supercooled water[J]. Crystallography Reports, 2001, 46(3): 496-502. |
77 | RØNNEBERG S, LAFORTE C, VOLAT C, et al. The effect of ice type on ice adhesion[J]. AIP Advances, 2019, 9(5): 055304. |
78 | EMELYANENKO K A, EMELYANENKO A M, BOINOVICH L B. Water and ice adhesion to solid surfaces: Common and specific, the impact of temperature and surface wettability[J]. Coatings, 2020, 10(7): 648. |
79 | GUO Q, SHEN X B, LIN G P, et al. Experimental analysis on adhesion force between ice and substrate [J]. Aircraft Design, 2019, 4: 33-37. |
80 | 易贤, 桂业伟, 朱国林, 等. 运输机翼型结冰的计算和实验[J]. 航空动力学报, 2011, 26(4): 808-813. |
YI X, GUI Y W, ZHU G L, et al. Experimental and computational investigation into ice accretion on airfoil of a transport aircraft[J]. Journal of Aerospace Power, 2011, 26(4): 808-813 (in Chinese). | |
81 | MILLER R, RIBBENS W. Detection of the loss of elevator effectiveness due to aircraft icing[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
82 | BROEREN A P, BRAGG M B. Flowfield measurements over an airfoil during natural low-frequency oscillations near stall[J]. AIAA Journal, 1999, 37(1): 130-132. |
83 | JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. |
84 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
85 | WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831-842. |
86 | BELLOSTA T, GUARDONE A, GORI G, et al. Uncertainty quantification for in-flight ice accretion under Appendix-C and Appendix-O conditions[C]∥Proceedings of the AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
87 | JECK R K. A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions: DOT/FAA/AR-01/91 [R]. Washington, D.C.: FAA, 2001. |
88 | KOROLEV A V, STRAPP J W, ISAAC G A, et al. The nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(6): 1495-1510. |
89 | HO W, HIDY G M, GOVAN R M. Microwave measurements of the liquid water content of atmospheric aerosols[J]. Journal of Applied Meteorology, 1974, 13(8): 871-879. |
90 | BITER C J, DYE J E, HUFFMAN D, et al. The drop-size response of the CSIRO liquid water probe[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(3): 359-367. |
91 | KING W D, MAHER C T, HEPBURN G A. Further performance tests on the CSIRO liquid water probe[J]. Journal of Applied Meteorology, 1981, 20(2): 195-202. |
92 | JIANG F K, TAI Y C, HO C M, et al. Theoretical and experimental studies of micromachined hot-wire anemometers[C]∥Proceedings of 1994 IEEE International Electron Devices Meeting. Piscataway: IEEE Press, 2002: 139-142. |
93 | BRUUN H H. Hot-wire anemometry: Principles and signal analysis[J]. Measurement Science and Technology, 1996, 7(10): 957. |
[1] | Weiguo ZHANG, Min TANG, Jie WU, Xianmin PENG, Guichuan ZHANG, Bowen NIE, Liangquan WANG, Chaoqun LI. Overview of wind tunnel test research on tiltrotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114-530114. |
[2] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[3] | Guochi GAO, Bo ZHANG, Jingze QUAN, Chong YIN, Li DING, Yubiao JIANG. Airworthiness certification technology of normal aircraft natural icing flight test [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128531-128531. |
[4] | Wenlong LI, Bo WU, Shuai XIE. Technology of wing load measurement for wing-body integrated structure with landing gear layout [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 229525-229525. |
[5] | Guanmian LIU, Fan ZHANG, Zhihang CHENG, Kangzhi YANG, Hejun QIN. Installation location of cloud combination probe for multi⁃engine propeller aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729295-729295. |
[6] | Jing NI, Bo MA, Zhaoxu YANG, Chenggang TAO, Yan ZHOU, Yiwen HU. Design and test of visual-inertial integrated method for landing guidance [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727636-727636. |
[7] | Xin DU, Zhe ZHU, Fangfang HU, Jiangtao HUANG, Gang LIU, Sheng ZHANG, Enguang SHAN, Jigang TANG. Guidance, navigation and control for airborne docking of autonomous aerial refueling [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628827-628827. |
[8] | Yahui SONG, Gaoyu FAN, Lixia QU, Yuelin ZHANG, Yue XU, Shuo HAN. Progress of aircraft sonic boom flight test measurement technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626186-626186. |
[9] | Liu ZHANG, Yong HUANG, Fuzheng CHEN, Zhenglong ZHU, Tianhao GUO, Yubiao JIANG, Zhu ZHOU. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128224-128224. |
[10] | Sheng ZHANG, Pan ZHOU, Yang HE, Jiangtao HUANG, Gang LIU, Jigang TANG, Huaizhi JIA, Xin DU. Air combat maneuver decision-making test based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 128094-128094. |
[11] | Shuai SHAO, Zheng GUO, Gaowei JIA, Qingyang CHEN, Zhongxi HOU, Laiping ZHANG. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127437-127437. |
[12] | ZHAO Kun, LIANG Junbiao, Ivan BELYAEV, Victor KOPIEV, Gareth BENNETT. Review of civil airplane landing gear noise study and its control approaches [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 26996-026996. |
[13] | CEN Fei, LIU Zhitao, JIANG Yong, GUO Tianhao, ZHANG Lei, KONG Yinan. Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125582-125582. |
[14] | ZHOU Yitao, YANG Yang, WU Zhigang, YANG Chao. Flight test for gust alleviation on a high aspect ratio UAV platform [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526126-526126. |
[15] | CHEN Guangqiang, DOU Guohui, WEI Haogong, ZOU Xin, LI Qi, LIU Zhou, ZHOU Weijiang. Air data sensing technology of Mars probe [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 626619-626619. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 435
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341