[1] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Boston: MIT Press, 1972: 149-165. [2] NICHOLS R. Development and validation of a two-equation turbulence model with wall functions for compressible flow[C]//14th Applied Aerodynamics Conference. Reston: AIAA, 1996. [3] VIEGAS J, RUBESIN M, HORSTMAN C. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows[C]//23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. [4] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999. [5] LIU J, WU S P. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate[J]. Journal of Physics: Conference Series, 2017, 822: 012017. [6] HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4): 450-453 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 考虑可压缩与热传导的壁面函数边界条件及其应用[J]. 空气动力学学报, 2006, 24(4): 450-453. [7] HE X Z, ZHAO H Y, LE J L. Aerodynamic force and heat of hypersonic laminar and turbulent flows[J]. Chinese Journal of Computational Physics, 2008, 25(5): 555-560 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 吸气式高超声速飞行器气动力气动热的数值模拟方法与应用[J]. 计算物理, 2008, 25(5): 555-560. [8] WU X J, MA M S, DENG Y Q, et al. Two turbulence models for the computation of transonic flow[J]. Acta Aerodynamica Sinica, 2008, 26(1): 85-90 (in Chinese). 吴晓军, 马明生, 邓有奇, 等. 两种湍流模型在跨声速绕流计算的应用研究[J]. 空气动力学学报, 2008, 26(1): 85-90. [9] XIAO H L, LUO J S. Improvement of sub-grid model in large eddy simulation and applications in turbulent channel flow[J]. Journal of Aerospace Power, 2007, 22(4): 583-587 (in Chinese). 肖红林, 罗纪生. 大涡模拟中亚格子模型的改进及其在槽道湍流中的应用[J]. 航空动力学报, 2007, 22(4): 583-587. [10] GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10): 2501-2515. [11] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999. [12] GRANVILLE P S. A modified van driest formula for the mixing length of turbulent boundary layers in pressure gradients[J]. Journal of Fluids Engineering, 1989, 111(1): 94-97. [13] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238: 699-722. [14] MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2): 1-11 (in Chinese). 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2): 1-11. [15] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2): 148-160. [16] WANG X G, CHEN Q, WAN Z, et al. Studyon an analytical wall function approach including compressibility[J]. Journal of Astronautics, 2021, 42(6): 731-739 (in Chinese). 王新光, 陈琦, 万钊, 等. 解析壁面函数的可压缩效应修正研究[J]. 宇航学报, 2021, 42(6): 731-739. [17] FRINK N T. Tetrahedral unstructured Navier-Stokes method for turbulent flows[J]. AIAA Journal, 1998, 36(11): 1975-1982. [18] GONCALVES E, HOUDEVILLE R. Reassessment of the wall functions approach for RANS computations[J]. Aerospace Science and Technology, 2001, 5(1): 1-14. [19] ESCH T, MENTER F R. Heat transfer predictions using advanced two-equation turbulence models[C]//The 4th Internal Symposium, Turbulence, Heat and Mass Transfer, 2003. [20] TIDRIRI M D. Domain decomposition for compressible Navier-Stokes equations with different discretizations and formulations[J]. Journal of Computational Physics, 1995, 119(2): 271-282. [21] KNOPP T, ALRUTZ T, SCHWAMBORN D. A grid and flow adaptive wall-function method for RANS turbulence modelling[J]. Journal of Computational Physics, 2006, 220(1): 19-40. [22] KALITZIN G, MEDIC G, IACCARINO G, et al. Near-wall behavior of RANS turbulence models and implications for wall functions[J]. Journal of Computational Physics, 2005, 204(1): 265-291. [23] ZHEN T K, ZUBAIR M, AHMAD K A. Experimental and numerical investigation of the effects of passive vortex generators onAludra UAV performance[J]. Chinese Journal of Aeronautics, 2011, 24(5): 577-583. [24] WANG K, XU G Q, SUN J N, et al. Effects ofdiameter ratio on the characteristics of flow and heat transfer in hybrid cooling configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 823-828 (in Chinese). 王开, 徐国强, 孙纪宁, 等. 直径比对冲击气膜组合冷却流动与换热的影响[J]. 航空学报, 2008, 29(4): 823-828. [25] VIESER W, ESCH T, MENTER F. Heat transfer predictions using advanced two-equation turbulence models: CFX Technical Memorandum CFX-VAL10/0602[R]. Pittsburgh: CFX, 2002. [26] SETTLES G S, DODSON L J. Supersonic and hypersonic shock/boundary-layer interaction database[J]. AIAA Journal, 1994, 32(7): 1377-1383. [27] GEROLYMOS G A, SAURET E, VALLET I. Oblique-shock-wave/boundary-layer interaction using near-wall Reynolds-stress models[J]. AIAA Journal, 2004, 42(6): 1089-1100. |