Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (11): 529075-529075.doi: 10.7527/S1000-6893.2023.29075
• Articles • Previous Articles
Dingyuan WEI, Silong ZHANG(), Jianfei WEI, Jingying ZUO, Xin LI, Wen BAO
Received:
2023-05-31
Revised:
2023-06-25
Accepted:
2023-12-05
Online:
2023-12-22
Published:
2023-12-21
Contact:
Silong ZHANG
E-mail:zhangsilong@hit.edu.cn
Supported by:
CLC Number:
Dingyuan WEI, Silong ZHANG, Jianfei WEI, Jingying ZUO, Xin LI, Wen BAO. Thermal protection and drag reduction characteristics of discrete hole film cooling in high Mach number combustor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529075-529075.
1 | 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报, 2022, 54(2): 263-288. |
YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese). | |
2 | FENG S, CHANG J T, ZHANG J L, et al. Numerical and experimental investigation of improving combustion performance of variable geometry dual-mode combustor[J]. Aerospace Science and Technology, 2017, 64: 213-222. |
3 | WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology, 2020, 98: 105594. |
4 | MARQUARDT P, KLAAS M, SCHRÖDER W. Experimental investigation of isoenergetic film-cooling flows with shock interaction[J]. AIAA Journal, 2019, 57(9): 3910-3923. |
5 | GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 740-746. |
6 | ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: A review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. |
7 | ZHENG Y J, HASSAN I. Experimental flow field investigations of a film cooling hole featuring an orifice[J]. Applied Thermal Engineering, 2014, 62(2): 766-776. |
8 | ZHU R, SIMON T W, XIE G N. Influence of secondary hole injection angle on enhancement of film cooling effectiveness with horn-shaped or cylindrical primary holes[J]. Numerical Heat Transfer Part A-Applications, 2018, 74(5): 1207-1227. |
9 | 王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报, 2021, 42(7): 124775. |
WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124775 (in Chinese). | |
10 | HAN C, REN J, JIANG H D. Multi-parameter influence on combined-hole film cooling system[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16): 4232-4240. |
11 | 康忠, 李国庆, 张深, 等. 收缩型双射流孔气膜冷却特性与损失机理[J]. 航空动力学报, 2023, 38(2): 335-343. |
KANG Z, LI G Q, ZHANG S, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2): 335-343 (in Chinese). | |
12 | 刘存良, 朱惠人, 白江涛. 收缩-扩张形气膜孔提高气膜冷却效率的机理研究[J]. 航空动力学报, 2008, 23(4): 598-604. |
LIU C L, ZHU H R, BAI J T. Study on the physics of film-cooling effectiveness enhancement by the converging-expanding hole[J]. Journal of Aerospace Power, 2008, 23(4): 598-604 (in Chinese). | |
13 | YAO Y, ZHANG J Z. Investigation on film cooling characteristics from a row of converging slot-holes on flat plate[J]. Science China Technological Sciences, 2011, 54(7): 1793-1800. |
14 | WANG C H, FAN F S, ZHANG J Z, et al. Large eddy simulation of film cooling flow from converging slot-holes[J]. International Journal of Thermal Sciences, 2018, 126: 238-251. |
15 | HUANG Y, ZHANG J Z, WANG C H. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface[J]. Heat and Mass Transfer, 2018, 54(6): 1741-1754. |
16 | 郑星, 冯黎明, 张云天, 等. 超声速边界层燃烧减阻技术研究进展[J]. 固体火箭技术, 2021, 44(4): 438-447. |
ZHENG X, FENG L M, ZHANG Y T, et al. Review of supersonic boundary layer combustion for skin friction drag reduction technology[J]. Journal of Solid Rocket Technology, 2021, 44(4): 438-447 (in Chinese). | |
17 | 刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报, 2020, 38(3): 593-602. |
LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica, 2020, 38(3): 593-602 (in Chinese). | |
18 | GOYNE C, STALKER R, BRESCIANINI C, et al. Drag reduction by film cooling with hydrogen on transatmospheric vehicles[C]∥ Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
19 | STALKER R J. Control of hypersonic turbulent skin friction by boundary- layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 577-587. |
20 | PUDSEY A S, WHEATLEY V, BOYCE R R. Supersonic boundary-layer combustion via multiporthole injector arrays[J]. AIAA Journal, 2015, 53(10): 2890-2906. |
21 | GAO Z X, JIANG C W, PAN S W, et al. Combustion heat-release effects on supersonic compressible turbulent boundary layers[J]. AIAA Journal, 2015, 53(7): 1949-1968. |
22 | 王帅, 何国强, 秦飞, 等. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4): 908-919. |
WANG S, HE G Q, QIN F, et al. Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4): 908-919 (in Chinese). | |
23 | ZUO J Y, ZHANG S L, WEI D Y, et al. Effects of combustion on supersonic film cooling using gaseous hydrocarbon fuel as coolant[J]. Aerospace Science and Technology, 2020, 106: 106202. |
24 | WEI J F, ZHANG S L, XUE J J, et al. Effects of wall thermal state on the cooling and friction reduction characters for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 209: 118291. |
25 | ZHANG D, FENG Y, ZHANG S L, et al. Quasi-one-dimensional model of scramjet combustor coupled with regenerative cooling[J]. Journal of Propulsion and Power, 2016, 32(3): 687-697. |
26 | CHANG Y C, JIA M, LIU Y D, et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame, 2013, 160(8): 1315-1332. |
27 | GRUBER M R, GOSS L P. Surface pressure measurements in supersonic transverse injection flowfields[J]. Journal of Propulsion and Power, 1999, 15(5): 633-641. |
28 | BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9): 1217-1218. |
29 | SURAWEERA M, MEE D, STALKER R. Skin friction reduction in hypersonic turbulent flow by boundary layer combustion[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
30 | KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling[J]. Journal of Turbulence, 2012, 13: N34. |
[1] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[2] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[3] | Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396. |
[4] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[5] | Yushu JIN, Xu XU, Qingchun YANG. Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26690-026690. |
[6] | Rong HAN, Wei LIU, Xiaoliang YANG. Dynamic drag reduction mechanism of self-aligned aerodisks on hypersonic aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126633-126633. |
[7] | Pinpeng ZENG, Shusheng CHEN, Jinping LI, Muliang JIA, Zhenghong GAO. Numerical simulation of heat reduction on blunt-headed bodies by combined scheme of drag reduction spike and annular jets [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128407-128407. |
[8] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[9] | Guangsheng ZHU, Shiyong YAO, Yi DUAN. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049-529049. |
[10] | Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. |
[11] | Xudong ZHANG, Zheng LI, Hao DONG, Siyuan GAO, Zubi JI, Kaixin LI, Guanghui BAI. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 115-123. |
[12] | LI Jun, WANG Junfeng, ZHAO Yatian, LUO Shibin. Research on combinational configuration of spike and multi-jets in off-design regimes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125949-125949. |
[13] | HAN Luyang, WANG Bin, PU Liang, CHEN Qing, ZHENG Haibin. Research progress on mechanism and related problems of energy deposition drag reduction technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 26032-026032. |
[14] | YANG Tihao, WANG Yiwen, WANG Yutong, SHI Yayun, ZHOU Zhu. Discrete adjoint-based optimization approach for laminar flow wings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126132-126132. |
[15] | JIANG Lihong, RAO Hanyue, LAN Xiayu, YANG Tihao, GENG Jianzhong, BAI Junqiang. Aerodynamic design and comprehensive benefit impact of hybrid laminar flow wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526791-526791. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341