1 |
PLUMMER D M, GÖKE S, RAUBER R M, et al. Discrimination of mixed-versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions[J]. Journal of Applied Meteorology and Climatology, 2010, 49(5): 920-936.
|
2 |
JANJUA Z A, TURNBULL B, HIBBERD S, et al. Mixed ice accretion on aircraft wings[J]. Physics of Fluids, 2018, 30(2): 027101.
|
3 |
CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21.
|
4 |
LIU Y, LI L K, CHEN W L, et al. An experimental study on the aerodynamic performance degradation of a UAS propeller model induced by ice accretion process[J]. Experimental Thermal and Fluid Science, 2019, 102: 101-112.
|
5 |
AOPA. Aircraft icing [EB/OL]. (1998-03-05)[2024-03-11]. .
|
6 |
AOPA. AOPA air safety institute accident report[EB/OL]. (2023-11-16)[2024-03-11]. .
|
7 |
POTAPCZUKM G, BERKOWITZB M. Experimental investigation of multielement airfoil ice accretion and resulting performance degradation[J]. Journal of Aircraft, 1990, 27(8): 679-691.
|
8 |
陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973.
|
|
CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626973 (in Chinese).
|
9 |
CHEN B, WANG L W. Simulation and research of aircraft deicing fluids deicing process[J]. Applied Mechanics and Materials, 2011, 121-126: 4695-4699.
|
10 |
ORNITZ S E. A mixed integer nonlinear programming model to optimize the use of aircraft deicing and anti-icing fluids[D]. Boca Raton: Florida Atlantic University, 2009:12-21.
|
11 |
ALBRIGHT A. A summary of NASA’s research on the fluid ice protection system[C]∥ Proceedings of the 23rd Aerospace Sciences Meeting. Reston: AIAA, 1985.
|
12 |
GRIFFITHS R. Investigation of leading edge ice accretion with cyclical pneumatic boot inflation[C]∥ 31st Aerospace Sciences Meeting. Nevada: ARC, 1993.
|
13 |
SOMMERWERK H, HORST P, BANSMER S. Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel[C]∥ Proceedings of the 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016.
|
14 |
HASLIM L A, LEE R D. Electro-expulsive separation system: US4690353[P]. 1987-09-01.
|
15 |
RHEE D H, YOON P H, CHO H H. Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J]. International Journal of Heat and Mass Transfer, 2003, 46(6): 1049-1061.
|
16 |
PELLISSIER M, HABASHI W, PUEYO A. Design optimization of hot-air anti-icing systems by FENSAP-ICE[C]∥ Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
|
17 |
胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术, 2016, 27(7): 8-11.
|
|
HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/de-icing[J]. Aeronautical Science & Technology, 2016, 27(7): 8-11 (in Chinese).
|
18 |
PETRENKO V F, SULLIVAN C R, KOZLYUK V, et al. Pulse electro-thermal de-icer (PETD)[J]. Cold Regions Science and Technology, 2011, 65(1): 70-78.
|
19 |
田苗, 宋慧敏, 梁华, 等. 介质阻挡放电等离子体防除冰实验研究[J]. 化工学报, 2019, 70(11): 4247-4256.
|
|
TIAN M, SONG H M, LIANG H, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. CIESC Journal, 2019, 70(11): 4247-4256 (in Chinese).
|
20 |
贾宇豪, 梁华, 魏彪, 等. 基于介质阻挡放电的等离子体除冰实验研究[J]. 高电压技术, 2021, 47(7): 2615-2623.
|
|
JIA Y H, LIANG H, WEI B, et al. Experimental investigation of plasma deicing based on dielectric barrier discharge[J]. High Voltage Engineering, 2021, 47(7): 2615-2623 (in Chinese).
|
21 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
22 |
孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31-49.
|
|
MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: Status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31-49 (in Chinese).
|
23 |
MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103.
|
24 |
CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8): 102.
|
25 |
谢理科, 梁华, 吴云, 等. 等离子体激励与电加热式防冰性能对比[J]. 航空学报, 2023, 44(1): 627971.
|
|
XIE L K, LIANG H, WU Y, et al. Comparison of anti-icing performance between plasma actuation and electric heating[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627971 (in Chinese).
|
26 |
WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics, 2021, 34(10): 1-5.
|
27 |
WEI B, WU Y, LIANG H, et al. Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer[J]. Physics of Fluids, 2019, 31(9): 091701.
|
28 |
赵彬彬, 董威, 刘娟, 等. 等离子体射流防冰性能实验研究I.DBD-PA参数化分析及防冰效果验证[J]. 上海交通大学学报, 2018, 52(8): 924-929.
|
|
ZHAO B B, DONG W, LIU J, et al. Experimental study on the anti-icing performance of plasma jet I. Parametric analysis of DBD-PA and verification on the anti-icing performance[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 924-929 (in Chinese).
|
29 |
赵彬彬, 董威, 张屹. 等离子体射流防冰性能实验研究Ⅱ.流向和展向布置DBD-PA防冰性能比较[J]. 上海交通大学学报, 2018, 52(11): 1532-1536.
|
|
ZHAO B B, DONG W, ZHANG Y. Experimental study on the anti-icing performance of plasma jet Ⅱ. Comparison of anti-icing performance using streamwise and spanwise DBD-PA[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1532-1536 (in Chinese).
|
30 |
GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
|
31 |
CYBYK B, GROSSMAN K, VAN WIE D. Computational assessment of the SparkJet flow control actuator[C]∥ Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003.
|
32 |
WANG L, XIA Z X, LUO Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.
|
33 |
周岩, 刘冰, 王林, 等. 串联式等离子体合成射流激励器放电及流场特性实验研究[C]∥第十届全国实验流体力学学术会议.上海:中国力学学会, 2016.
|
|
ZHOU Y, LIU B, WANG L, et al. Experimental study on discharge and flow field characteristics of cascade plasma synthetic jet exciter [C]∥ 10th National Conference on Experimental Fluid Mechanics. Shanghai: CSTAM, 2016 (in Chinese).
|
34 |
ZHOU Y, XIA Z X, LUO Z B, et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial[J]. Chinese Journal of Aeronautics, 2018, 31(12): 2234-2247.
|
35 |
GAO T X, LUO Z B, ZHOU Y, et al. Novel deicing method based on plasma synthetic jet actuator[J]. AIAA Journal, 2020, 58(9): 4181-4188.
|
36 |
GAO T X, LUO Z B, ZHOU Y, et al. Experimental investigation on ice-breaking performance of a novel plasma striker[J]. Chinese Journal of Aeronautics, 2022, 35(1): 307-317.
|
37 |
景向嵘, 程盼, 罗振兵, 等. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(): 727765.
|
|
JING X R, CHENG P, LUO Z B, et al. Characteristics of breaking ice and crack propagation law by arc discharge exciter[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727765 (in Chinese).
|