[1] 解永春, 王勇, 陈奥, 等. 基于学习的空间机器人在轨服务操作技术[J]. 空间控制技术与应用, 2019, 45(4):25-37. XIE Y C, WANG Y, CHEN A, et al. Leaning based on-orbit servicing manipulation technology of space robot[J]. Aerospace Control and Application, 2019, 45(4):25-37(in Chinese). [2] ROTENBERGER S, SOOHOO D, ABRAHAM G. Orbital express fluid transfer demonstration system[C]//SPIE Defense and Security Symposium. Proc SPIE 6958, Sensors and Systems for Space Applications II, 2008:695808. [3] NASA's Exploration & In-space Services. Robotic refueling mission[EB/OL]. https://nexis.gsfc.nasa.gov/RRM3.html. [4] 郝颖明, 付双飞, 范晓鹏, 等. 面向空间机械臂在轨服务操作的视觉感知技术[J]. 无人系统技术, 2018, 1(1):54-65. HAO Y M, FU S F, FAN X P, et al. Vision perception technology for space manipulator on-orbit service operations[J]. Unmanned Systems Technology, 2018, 1(1):54-65(in Chinese). [5] SCHAAL S, ATKESON C G. Learning control in robotics[J]. IEEE Robotics & Automation Magazine, 2010, 17(2):20-29. [6] LI P X, ZHAO H C, LIU P F, et al. RTM3D:Real-time monocular 3D detection from object keypoints for autonomous driving[M]//Computer Vision-ECCV 2020. Cham:Springer International Publishing, 2020:644-660. [7] WANG X B, ZHANG S F, WANG S, et al. Mis-classified vector guided softmax loss for face recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12241-12248. [8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:770-778. [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [10] HE K M, GKIOXARI G, DOLLAR P, et al. MRCNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017:2961-2969. [11] DAI J F, HE K M, SUN J. Instance-aware semantic segmentation via multi-task network cascades[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:3150-3158. [12] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [13] WU L, SUN P J, HONG R C, et al. SocialGCN:An efficient graph convolutional network based model for social recommendation[DB/OL]. arXiv preprint:1811.02815,2018. [14] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference on-WWW'19. New York:ACM Press, 2019:3307-3313. [15] ADAM S, DAVID R, DAVID B et al. Learning annotated hierarchies from relational data[M]//Advances in Neural Information Processing Systems 19. Cambridge:The MIT Press, 2007. [16] ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020:1-20. [17] CHEN T S, LIN L, CHEN R Q, et al. Knowledge-embedded representation learning for fine-grained image recognition[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization, 2018. [18] MARINO K, SALAKHUTDINOV R, GUPTA A. The more You know:Using knowledge graphs for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:20-28. [19] CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:5172-5181. [20] LIU Z, JIANG Z D, FENG W. OD-GCN:Object detection by knowledge graph with GCN[DB/OL]. arXiv preprint:1908.04385, 2019. [21] CHEN A, XIE Y C, WANG Y, et al. Knowledge graph based satellite component detection method for on-orbit refueling[C]//71st International Astronautical Congress (IAC 2020)-The Cyberspace Edition, 2020. [22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:936-944. [23] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. arXiv preprint:1609.02907, 2016. |