[1] ORDÓÑEZ C, SÁNCHEZ LASHERAS F, ROCA-PARDIN~AS J, et al. A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines[J]. Journal of Computational and Applied Mathematics, 2019, 346: 184-191. [2] ZENG J Y, CHENG Y J. An ensemble learning-based remaining useful life prediction method for aircraft turbine engine[J]. IFAC-PapersOnLine, 2020, 53(3): 48-53. [3] SAE International. Safety assessment of transport airplanes in commercial service: SAE APR5150[S]. Warrendale: SAE International, 2003. [4] ZHAO T D. Safety design analysis and verification[M]. Beijing: National Defense Industry Press, 2011: 25-98 (in Chinese). 赵廷弟. 安全性设计分析与验证[M]. 北京: 国防工业出版社, 2011: 25-98. [5] KANG R. Fundamentals of reliability & maintainability & supportability engineering[M]. Beijing: National Defense Industry Press, 2012: 269-313 (in Chinese). 康锐. 可靠性维修性保障性工程基础[M]. 北京: 国防工业出版社, 2012: 269-313. [6] BAO M Y, LI G, DING S T. Research on model-based safety analysis for aero-engine[J]. Journal of Aerospace Power, 2016, 31(8): 2029-2039 (in Chinese). 鲍梦瑶, 李果, 丁水汀. 基于模型的航空发动机系统安全性研究[J]. 航空动力学报, 2016, 31(8): 2029-2039. [7] LIU L L, YANG Z Z, CHEN W, et al. The whole engine dynamic response and security analysis during aero-engine blade out event[J]. Computer Simulation, 2020, 37(2): 47-52, 124 (in Chinese). 刘璐璐, 杨宗志, 陈伟, 等. 航空发动机叶片丢失整机响应及安全性分析[J]. 计算机仿真, 2020, 37(2): 47-52, 124. [8] LUO G. Structural safety analysis and assessment method of high bypass ratio turbo-fan engine due to bird ingestion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 1-20 (in Chinese). 罗刚. 大涵道比涡扇发动机吸鸟结构安全性分析与评估方法[D]. 南京: 南京航空航天大学, 2018: 1-20. [9] LEE H, LI G Y, RAI A, et al. Real-time anomaly detection framework using a support vector regression for the safety monitoring of commercial aircraft[J]. Advanced Engineering Informatics, 2020, 44: 101071. [10] FENG Y W, PAN W H, LIU J Q, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524732 (in Chinese). 冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报, 2021, 42(4): 524732. [11] KANG R. Belief reliability theory and methodology[M]. Beijing: National Defense Industry Press, 2020: 3-136 (in Chinese). 康锐. 确信可靠性理论与方法[M]. 北京: 国防工业出版社, 2020: 3-136. [12] MVLLER R, DRAX C. Operational risk management as an integrated part of safety management systems[M]//MVLLER R, WITTMER A, DRAX C. Aviation risk and safety management. Cham: Springer, 2014: 73-76. [13] Federal Aviation Administration. Monitor safety/analyze data: 8110.107A[S]. Washington, D.C.: Federal Aviation Administration, 2012. [14] WANG X H. Research on key techniques of real-time monitoring for aircraft flight safety[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 4-37 (in Chinese). 王旭辉. 飞机飞行安全实时监控关键技术研究[D]. 南京: 南京航空航天大学, 2008: 4-37. [15] XIE X L. Research on performance assessment and degradation prediction of aeroengine[D]. Harbin: Harbin Institute of Technology, 2016: 17-45 (in Chinese). 谢晓龙. 航空发动机性能评价与衰退预测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 17-45. [16] SUN J Z, LI C Y, LIU C, et al. A data-driven health indicator extraction method for aircraft air conditioning system health monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(2): 409-416. [17] YE B J, BAO X, LIU B, et al. Machine learning for aircraft approach time prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324136 (in Chinese). 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J]. 航空学报, 2020, 41(10): 324136. [18] CHE C C, WANG H W, FU Q, et al. Combining multiple deep learning algorithms for prognostic and health management of aircraft[J]. Aerospace Science and Technology, 2019, 94: 105423. [19] AL-WAELI A H A, SOPIAN K, KAZEM H A, et al. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network[J]. Solar Energy, 2018, 162: 378-396. [20] LIU L, WANG Z S, ZHANG H G. Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 299-313. [21] DONG Y Q. An application of Deep Neural Networks to the in-flight parameter identification for detection and characterization of aircraft icing[J]. Aerospace Science and Technology, 2018, 77: 34-49. [22] OMAR ALKHAMISI A, MEHMOOD R. An ensemble machine and deep learning model for risk prediction in aviation systems[C]//2020 6th Conference on Data Science and Machine Learning Applications (CDMA). Piscataway: IEEE Press, 2020: 54-59. [23] ZHANG X G, MAHADEVAN S. Bayesian neural networks for flight trajectory prediction and safety assessment[J]. Decision Support Systems, 2020, 131: 113246. [24] SONG L K, FEI C W, BAI G C, et al. Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism[J]. Advanced Engineering Informatics, 2017, 33: 144-153. [25] MATOS J, FARIA R P V, NOGUEIRA I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356. [26] SEDKI A, OUAZAR D. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems[J]. Advanced Engineering Informatics, 2012, 26(3): 582-591. [27] CAWLEY G, TALBOT N. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters[J]. Journal of Machine Learning Research, 2007, 8: 841-861. [28] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2: 429-444. [29] LIU S. DEA-based fuzzy comprehensive evaluation and its applications[D]. Hangzhou: Zhejiang University, 2010: 19-36 (in Chinese). 柳顺. 基于数据包络分析的模糊综合评价方法及其应用[D]. 杭州: 浙江大学, 2010: 19-36. |