Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (12): 29341-029341.doi: 10.7527/S1000-6893.2023.29341
• Reviews • Previous Articles Next Articles
Yong SHANG(), Huijun YANG, Yang FENG, Changzhen ZHANG, Yanling PEI, Shengkai GONG
Received:
2023-07-19
Revised:
2023-08-14
Accepted:
2023-10-20
Online:
2024-06-25
Published:
2023-11-01
Contact:
Yong SHANG
E-mail:cs881013@buaa.edu.cn
Supported by:
CLC Number:
Yong SHANG, Huijun YANG, Yang FENG, Changzhen ZHANG, Yanling PEI, Shengkai GONG. Research progress of smart thermal barrier coatings based on phosphorescence temperature measurement technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 29341-029341.
1 | 胡娜, 赵伟, 晋小超, 等. 航空发动机涡轮叶片接触式测温技术应用进展[J]. 航空工程进展, 2023, 14(1): 1-12. |
HU N, ZHAO W, JIN X C, et al. Advances in application of contact temperature measurement technology for aero-engineblade[J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 1-12 (in Chinese). | |
2 | DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6): 315-348. |
3 | 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展, 2020, 39(10): 707-722, 738. |
ZHOU Y C, YANG L, LIU Z Y, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China, 2020, 39(10): 707-722, 738 (in Chinese). | |
4 | 姚艳玲, 代军, 黄春峰. 现代航空发动机温度测试技术发展综述[J]. 航空制造技术, 2015, 58(12): 103-107. |
YAO Y L, DAI J, HUANG C F. Development for temperature measurement technology in modern aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(12): 103-107 (in Chinese). | |
5 | TOUGAS I M, AMANI M, GREGORY O J. Metallic and ceramic thin film thermocouples for gas turbine engines[J]. Sensors, 2013, 13(11): 15324-15347. |
6 | 李杨, 李志敏, 熊兵,等. 航空发动机涡轮叶片温度测量技术现状与发展[C]∥ 第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集. 贵阳: 中国科协, 2013: 646-650. |
LI Y, LI Z M, XIONG B, et al. Present situation and development of temperature measurement technology of aero-engine turbine blade[C]∥ The 13th Branch of the 15th Annual Conference of Chinese Association for Science and Technology: Symposium on Aeroengine Design, Manufacture and Application Technology. Guiyang:Chinese Association for Science and Technology,2013: 646⁃650 (in Chinese). | |
7 | 黄春峰, 蒋明夫, 毛茂华. 国外航空发动机薄膜热电偶技术发展研究[J]. 航空发动机, 2011, 37(6): 53-57. |
HUANG C F, JIANG M F, MAO M H. Development on thin-film thermocouples technology for foreign aeroengine[J]. Aeroengine, 2011, 37(6): 53-57 (in Chinese). | |
8 | 熊兵, 侯敏杰, 陈洪敏, 等. 辐射测温技术在涡轮叶片温度场中的应用[J]. 燃气涡轮试验与研究, 2008, 21(3): 50-54. |
XIONG B, HOU M J, CHEN H M, et al. Application of infrared thermometer in turbine blade temperature field[J]. Gas Turbine Experiment and Research, 2008, 21(3): 50-54 (in Chinese). | |
9 | DUAN F L, HU M K, LIN Y Z, et al. A new high-temperature sensing device by making use of TBC thermistor for intelligent propulsion systems[C]∥ Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018. |
10 | 刘丽华, 王军, 新力, 等. 光纤温度传感器的应用及发展[J]. 仪器仪表学报, 2003, 24(5): 547-550. |
LIU L H, WANG J, XIN L, et al. Applied study and development of fiber-optic temperature sensor[J]. Chinese Journal of Scientific Instrument, 2003, 24(5): 547-550 (in Chinese). | |
11 | 韩国庆, 刘显明, 雷小华, 等. 光纤传感技术在航空发动机温度测试中的应用[J]. 仪器仪表学报, 2022, 43(1): 145-164. |
HAN G Q, LIU X M, LEI X H, et al. Application of optical fiber sensing in aero-engine temperature test[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 145-164 (in Chinese). | |
12 | RABHIOU A, FEISTJ, KEMPFA, et al. Concept for a phosphorescent thermal history sensor[C]∥ Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations. New York: ASME, 2010. |
13 | 王超, 苟学科, 段英, 等. 航空发动机涡轮叶片温度测量综述[J]. 红外与毫米波学报, 2018, 37(4): 501-512. |
WANG C, GOU X K, DUAN Y, et al. A review of aero-engine turbine blade temperature measurement[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 501-512 (in Chinese). | |
14 | 周峰, 欧阳永杰, 王龙南, 等. 航空发动机晶体测温技术应用研究[J]. 科学技术创新, 2022(17): 165-168. |
ZHOU F, OUYANG Y J, WANG L N, et al. Application research on crystal temperature measurement technology of aero-engine[J]. Scientific and Technological Innovation, 2022(17): 165-168 (in Chinese). | |
15 | ALLISON S W, GILLIES G T. Remote thermometry with thermographic phosphors: Instrumentation and applications[J]. Review of Scientific Instruments, 1997, 68(7): 2615-2650. |
16 | CHOY K L, HEYES A L, FEIST J P. Thermal barrier coating with thermoluminescent indicator material embedded therein: US8173266[P]. 2012⁃05⁃08. |
17 | FEIST J P, NICHOLLS J R, HEYES A L. Determining thermal history of components: US20110069735[P]. 2011-03-24. |
18 | CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annual Review of Materials Research, 2009, 39: 325-359. |
19 | 杨丽霞, 付雅婷, 赵晓峰, 等. 热障涂层在线/离线磷光温度测量技术研究进展[J]. 航空制造技术, 2022, 65(3): 71-81. |
YANG L X, FU Y T, ZHAO X F, et al. Research progress of on-line/off-line phosphor thermometry technology for thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2022, 65(3): 71-81 (in Chinese). | |
20 | HEYES A L, RABHIOU A, FEIST J P, et al. Thermal history sensing with thermographic phosphors[C]∥ AIP Conference Proceedings. New York: AIP, 2013: 891-896. |
21 | ZHOU Y H, LIN J, WANG S B, et al. Preparation of Y3Al5O12:Eu phosphors by citric⁃gel method and their luminescent properties[J]. Optical Materials, 2002, 20(1): 13-20. |
22 | YÁÑEZ-GONZÁLEZ Á, VAN WACHEM B, SKINNER S, et al. On the kinetics of thermal oxidation of the thermographic phosphor BaMgAL10O17:Eu[J]. Materials & Design, 2016, 108: 145-150. |
23 | GONZÁLEZ Á Y, SKINNER S, BEYRAU F, et al. Reusable thermal history sensing via oxidation of a divalent rare earth ion-based phosphor synthesized by the sol⁃gel process[J]. Heat Transfer Engineering, 2015, 36(14-15): 1275-1281. |
24 | ARAGUAS RODRIGUEZ S, PERAL JIMÉNEZ D, PILGRIM C C, et al. Feasibility of the use of thermal history paints for long term exposure of low temperature life critical components[C]∥ ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 4: Controls, Diagnostics, and Instrumentation. New York: ASME, 2023. |
25 | WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8): 4743-4756. |
26 | KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications[J]. Sensors, 2008, 8(9): 5673-5744. |
27 | GOSS L P, SMITH A A, POST M E. Surface thermometry by laser-induced fluorescence[J]. Review of Scientific Instruments, 1989, 60(12): 3702-3706. |
28 | FEIST J P, HEYES A L. The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications[J]. Measurement Science and Technology, 2000, 11(7): 942-947. |
29 | WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst, 1983, 108(1290):1067⁃1071. |
30 | ALLISON S W, GOEDEKE S M, CATES M R, et al. Fluorescence rise time measurements for high temperature fluorescence-based thermometry[M]. Washington, D.C.: Department of Energy, 2005. |
31 | CAI T, PARK Y, MOHAMMADSHAHI S, et al. Rise time-based phosphor thermometry using Mg4FGeO6:Mn4+ [J]. Measurement Science and Technology, 2021, 32(1): 015201. |
32 | OMRANE A, OSSLER F, ALDÉN M. Two-dimensional surface temperature measurements of burning materials[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2653-2659. |
33 | ALDÉN M, OMRANE A, RICHTER M, et al. Thermographic phosphors for thermometry: A survey of combustion applications[J]. Progress in Energy and Combustion Science, 2011, 37(4): 422-461. |
34 | 王鹏程, 赵运才, 刘明, 等. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076. |
WANG P C, ZHAO Y C, LIU M, et al. Research status and trend of YSZ thermal barrier coatings doped with rare earth oxides[J]. Materials Reports, 2021, 35(9): 9069-9076 (in Chinese). | |
35 | LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Materials Characterization, 2019, 147: 199-206. |
36 | SU Y J, TRICE R W, FABER K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3⁃ZrO2 (YSZ) thermal-barrier coatings[J]. Oxidation of Metals, 2004, 61(3): 253-271. |
37 | SHEN Y, CHAMBERS M D, CLARKE D R. Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ[J]. Surface and Coatings Technology, 2008, 203(5-7): 456-460. |
38 | CHAMBERS M D, CLARKE D R. Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials[J]. Surface and Coatings Technology, 2007, 202(4-7): 688-692. |
39 | SKINNER S J, FEIST J P, BROOKS I J E, et al. YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 52-59. |
40 | 杨金华,董禹飞,杨瑞, 等. 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力, 2021(5): 56-59. |
YANG J H, DONG Y F, YANGR, et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power, 2021(5): 56-59 (in Chinese). | |
41 | CHAMBERS M D, ROUSSEVE P A, CLARKE D R. Luminescence thermometry for environmental barrier coating materials[J]. Surface and Coatings Technology, 2008, 203(5-7): 461-465. |
42 | PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. |
43 | FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341. |
44 | CLARKE D. Embedded optical sensors for thermal barrier coatings: FG26-03NT41794[R]. Washington, D.C.: Department of Energy, 2004. |
45 | 王志平, 许婧, 刘延宽. 热障涂层荧光测温法的现状与发展研究[J]. 热加工工艺, 2021, 50(22): 6-13. |
WANG Z P, XU J, LIU Y K. Research on current status and development of fluorescence thermometry for thermal barrier coatings[J]. Hot Working Technology, 2021, 50(22): 6-13 (in Chinese). | |
46 | CHEN X, MUTASIM Z, PRICE J, et al. Industrial sensor TBCs: Studies on temperature detection and durability[J]. International Journal of Applied Ceramic Technology, 2005, 2(5): 414-421. |
47 | PILGRIM C C, HEYES A L, FEIST J P. Thermal history sensors for non-destructive temperature measurements in harsh environments[C]∥ AIP Conference Proceedings. New York: AIP Publishing, 2014: 1609-1616. |
48 | STENDERS D, KARADAGLI I, PFLITSCH C, et al. Sol-gel deposited thermographic phosphors as possible thermal history coatings[C]∥ IET & ISA 60th International Instrumentation Symposium. London: IET, 2014: 1-6. |
49 | DENG T L, YAN S R, HU J G. Effect of calcination temperature on up-conversion photoluminescence of the GdAlO3: Er3+, Yb3+ phosphor[J]. ECS Journal of Solid State Science and Technology, 2014, 4(3): R48-R53. |
50 | COPIN E B, MASSOL X, AMIEL S, et al. Novel erbia-yttria Co-doped zirconia fluorescent thermal history sensor[J]. Smart Materials and Structures, 2017, 26(1): 015001. |
51 | AMIEL S, COPIN E, SENTENAC T, et al. On the thermal sensitivity and resolution of a YSZ:Er3+/YSZ:Eu3+ fluorescent thermal history sensor[J]. Sensors and Actuators A: Physical, 2018, 272: 42-52. |
52 | ELDRIDGE J I, BENCIC T J, ALLISON S W, et al. Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors[J]. Journal of Thermal Spray Technology, 2004, 13(1): 44-50. |
53 | YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu- and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2017, 316: 210-218. |
54 | ABOU NADA F, LANTZ A, LARFELDT J, et al. Remote temperature sensing on and beneath atmospheric plasma sprayed thermal barrier coatings using thermographic phosphors[J]. Surface and Coatings Technology, 2016, 302: 359-367. |
55 | GENTLEMAN M M, ELDRIDGE J I, ZHU D M, et al. Non-contact sensing of TBC/BC interface temperature in a thermal gradient[J]. Surface and Coatings Technology, 2006, 201(7): 3937-3941. |
56 | STEENBAKKER R J L, FEIST J P, WELLMAN R G, et al. Sensor thermal barrier coatings: Remote in situ condition monitoring of EB-PVD coatings at elevated temperatures[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(4): 041301. |
57 | GENTLEMAN M M, CLARKE D R. Concepts for luminescence sensing of thermal barrier coatings[J]. Surface and Coatings Technology, 2004, 188-189: 93-100. |
58 | COPIN É, SENTENAC T, LE MAOULT Y, et al. Feasibility of luminescent multilayer sol-gel thermal barrier coating manufacturing for future applications in through-thickness temperature gradient sensing[J]. Surface and Coatings Technology, 2014, 260: 90-96. |
59 | 刘郑红, 余亚丽, 程伟伦, 等. 电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量[J]. 上海交通大学学报, 2023, 57(9): 1186-1195. |
LIU Z H, YU Y L, CHENG W L, et al. Evaluation of thermal insulation performance of EB-PVD YSZ thermal barrier coatings by phosphorescence lifetime online measurement[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1186-1195 (in Chinese). | |
60 | 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43(2): 113-131. |
DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43(2): 113-131 (in Chinese). | |
61 | HEYES A L, RABHIOU A, FEIST J P, et al. Phosphor based temperature indicating paints[C]∥ Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation. New York:American Society of Mechanical Engineers, 2012: 927⁃933. |
62 | KREWINKEL R, FÄRBER J, ORTH U, et al. Validation of surface temperature measurements on a combustor liner under full-load conditions using a novel thermal history paint[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 041508. |
63 | FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(1): 012101. |
64 | FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Precision temperature detection using a phosphorescence sensor coating system on a Rolls-Royce Viper engine[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 917-926. |
65 | YAÑEZ GONZALEZ A, PILGRIM C C, FEIST J P, et al. On-line temperature measurement inside a thermal barrier sensor coating during engine operation[J]. Journal of Turbomachinery, 2015, 137(10): 101004. |
66 | SOLLAZZO P Y, FEIST J P, BERTHIER S, et al. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection[C]∥AIP Conference Proceedings. New York: AIP, 2013: 897⁃902. |
67 | NAU P, YIN Z Y, LAMMEL O, et al. Wall temperature measurements in gas turbine combustors with thermographic phosphors[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4): 041021. |
68 | NAU P, GÖRS S, ARNDT C, et al. Wall temperature measurements in a full-scale gas turbine combustor test rig with fiber coupled phosphor thermometry[J]. Journal of Turbomachinery, 2021, 143(1): 011007. |
69 | NAU P, YIN Z Y, GEIGLE K P, et al. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor[J]. Applied Physics B, 2017, 123(12): 279. |
70 | ARNDT C M, NAU P, MEIER W. Characterization of wall temperature distributions in a gas turbine model combustor measured by 2D phosphor thermometry[J]. Proceedings of the Combustion Institute, 2021, 38(1): 1867-1875. |
71 | ARAGUÁS RODRÍGUEZ S, JELÍNEK T, MICHÁLEK J, et al. Accelerated thermal profiling of gas turbine components using luminescent thermal history paints[J]. Journal of the Global Power and Propulsion Society, 2018, 2: 344-361. |
72 | ELDRIDGE J I, ALLISON S W, JENKINS T P, et al. Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG:Tm thermographic phosphor[J]. Measurement Science and Technology, 2016, 27(12): 125205. |
73 | TOBIN K W, ALLISON S W, CATES M R, et al. High-temperature phosphor thermometry of rotating turbine blades[J]. AIAA Journal, 1990, 28(18): 1485-1490. |
74 | MCCLEAN I P, SIMONS A J, THOMAS C B, et al. Comparison between thin film and bonded powder phosphors for thermographic sensing in gas turbine engines[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(1): 129-131. |
75 | JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 2020, 31(4): 044003. |
76 | ZHANG Y L, GUOL, YANG Y P, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953. |
77 | JEON H, LEE I, OH Y. Changes in high-temperature thermal properties of modified YSZ with various rare earth doping elements[J]. Ceramics International, 2022, 48(6): 8177-8185. |
78 | 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报, 2007, 28(1): 196-200. |
JI X J, GONG S K, XU H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et AstronauticaSinica, 2007, 28(1): 196-200 (in Chinese). | |
79 | TIAN H L, WANG C L, GUO M Q, et al. Microstructure and luminescence properties of YSZ-based thermal barrier coatings modified by Eu2O3 [J]. Ceramics International, 2020, 46(4): 4444-4453. |
80 | HEYES A L, FEIST J P, CHEN X, et al. Optical nondestructive condition monitoring of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6): 061301. |
81 | 刘延宽, 许婧, 李尧, 等. Eu3+掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J]. 稀有金属材料与工程, 2021, 50(5): 1699-1705. |
LIU Y K, XU J, LIY, et al. Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1699-1705 (in Chinese). | |
82 | HALDAR S, WARREN P, FOULIARD Q, et al. Synchrotron XRD measurements of thermal barrier coating configurations with rare earth elements for phosphor thermometry[C]∥ Proceedings of ASME Turbo Expo2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
83 | FOULIARD Q, HERNANDEZ J, EBRAHIMI H, et al. Synchrotron X-ray diffraction to quantify in⁃situ strain on rare-earth doped yttria-stabilized zirconia thermal barrier coatings[C]∥ Proceedings of ASME Turbo Expo2021:Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
[1] | Shen Yingjun Ji Daoxin;Xu Yongli;Chen Changqi. THE DEVELOPMENT OF RAPID RESOLIDIFIED Al-Fe-MRE HIGH TEMPERATURE ALUMINUM ALLOY [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1995, 16(5): 539-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341