[1] SULLIVAN T N, MEYERS M A, ARZT E. Scaling of bird wings and feathers for efficient flight[J]. Science Advances, 2019, 5(1):eaat4269. [2] CHEN C, ZHANG T. A review of design and fabrication of the bionic flapping wing micro air vehicles[J]. Micromachines, 2019, 10(2):144. [3] KANG C K, SHYY W. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing[J]. Journal of the Royal Society, Interface, 2013, 10(85):20130361. [4] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094. [5] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3):eaal2505. [6] GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Roboraven:A flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft Robotics, 2014, 1(4):275-288. [7] HOLNESS A E, BRUCK H A, GUPTA S K. Characterizing and modeling the enhancement of lift and payload capacity resulting from thrust augmentation in a propeller-assisted flapping wing air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):50-69. [8] SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7):284-327. [9] 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3):1-10. YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):1-10(in Chinese). [10] ALON TZEZANA G, BREUER K S. Thrust, drag and wake structure in flapping compliant membrane wings[J]. Journal of Fluid Mechanics, 2019, 862:871-888. [11] XUE D, SONG B F, SONG W P, et al. Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight[J]. Aerospace Science and Technology, 2019, 95:105491. [12] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:A tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012 [13] DE CROON G C H E, PERÇIN M, REMES B D W, et al. The DelFly[M]. Dordrecht:Springer Netherlands, 2016. [14] DOMAN D B, TANG C P, REGISFORD S. Modeling interactions between flexible flapping-wing spars, mechanisms, and drive motors[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1457-1473. [15] KALPATHY VENKITESWARAN V, SU H J. Optimization of mechanism design of flapping wing MAV[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2014:0573. [16] YANG W Q, WANG L G, SONG B F. Dove:A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):70-84. [17] TAKASHI K, NAGAMORI S. Permanent magnet and brushless DC motors[M]. Oxford:Clarendon Press, 1985:8-9. [18] LINDAHL P, MOOG E, SHAW S R. Simulation, design, and validation of an UAV SOFC propulsion system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2582-2593. [19] 侯红胜, 刘卫国, 马瑞卿. 基于动态转矩的无刷直流电机机械特性和等效电压系数研究[J]. 西北工业大学学报, 2016, 34(6):1050-1056. HOU H S, LIU W G, MA R Q. Mechanicalcharacteristics and equivalent voltage coefficient research of BLDC motor based on the analysis of dynamic torque[J]. Journal of Northwestern Polytechnical University, 2016, 34(6):1050-1056(in Chinese). [20] DOERFFEL D, SHARKH S A. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2):395-400. [21] TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3(2):289-298. [22] NIAN P, SONG B F, YANG W Q, et al. Integrated design and analysis of an amplitude-variable flapping mechanism for FMAV[C]//Intelligent Robotics and Applications, 2017. [23] NIAN P, SONG B F, XUAN J L, et al. Study on flexible flapping wings with three dimensional asymmetric passive deformation in a flapping cycle[J]. Aerospace Science and Technology, 2020, 104:105944. [24] PAMADI B N. Performance,stability, dynamics, and control of airplanes[M]. 2nd ed. Reston:AIAA, 2004. [25] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005:214-217. FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aerocraft[M]. Beijing:Beihang University Press, 2005:214-217(in Chinese). [26] 飞机设计手册总编委会. 飞机设计手册:气动设计[M]. 北京:航空工业出版社, 2002:205-208. Aircraft Design Manual Editorial Board. Aircraft design manual:Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:205-208(in Chinese). |