[1] BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5):451-471. [2] STANEWSKY E, DÉLERY J, FULKER J, et al. Assessment of shock control-A summary[M]//Notes on Numerical Fluid Mechanics (NNFM). Wiesbaden:Vieweg+Teubner Verlag, 1997:76-77. [3] STANEWSKY E, DÉLERY J, FULKER J, et al. Drag reduction by shock and boundary layer control[M]. Berlin:Springer Berlin Heidelberg,2002. [4] 李沛峰, 张彬乾, 陈迎春, 等. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报, 2011, 32(6):971-977. LI P F, ZHANG B Q, CHEN Y C, et al. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese). [5] JINKS E R, BRUCE P J, SANTER M J. Adaptive shock control bumps[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:0945. [6] LAGOUDAS D C. Shape memory alloys:Modeling and engineering applications[M]. Berlin:Springer, 2008. [7] LESTER B T, BAXEVANIS T, CHEMISKY Y, et al. Review and perspectives:Shape memory alloy composite systems[J]. Acta Mechanica, 2015, 226(12):3907-3960. [8] MOHD J J, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design (1980-2015), 2014, 56:1078-1113. [9] 聂瑞, 裘进浩, 季宏丽, 等. 自适应鼓包气动构型优化与结构概念设计[J]. 工程热物理学报, 2017, 38(9):1896-1905. NIE R, QIU J H, JI H L, et al. Aerodynamic configuration optimization and structural concept design of adaptive bump[J]. Journal of EngineeringThermophysics, 2017, 38(9):1896-1905(in Chinese). [10] PREISACH F.Vber die magnetische nachwirkung[J]. Zeitschrift Für Physik, 1935, 94(5-6):277-302. [11] SU C Y, WANG Q Q, CHEN X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12):2069-2074. [12] WEBB G V, LAGOUDAS D C, KURDILA A J. Hysteresis modeling of SMA actuators for control applications[J]. Journal of Intelligent Material Systems and Structures, 1998, 9(6):432-448. [13] LIU Y H, FENG Y, DU J, et al. Adaptive dynamicsurface control of a class of nonlinear systems with unknown duhem hysteresis[C]//Intelligent Robotics and Applications, 2012. [14] NGUYEN B K, AHN K K. Feedforward control of shape memory alloy actuators using fuzzy-based inverse preisach model[J]. IEEE Transactions on Control Systems Technology, 2009, 17(2):434-441. [15] FENG Y, RABBATH C A, HONG H, et al. Inverse hysteresis control for shape memory alloy micro-actuators based flap positioning system[C]//49th IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2010:3662-3667. [16] LIU Y H, FENG Y, CHEN X K. Robust adaptive dynamic surface control for a class of nonlinear dynamical systems with unknown hysteresis[J]. Abstract and Applied Analysis, 2014, 2014:1-10. [17] MAI H H, SONG G B, LIAO X F. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network[J]. Smart Materials and Structures, 2012, 22(1):015001. [18] 郝林. 形状记忆合金鼓包力学特性研究[D]. 南京:南京航空航天大学, 2018. HAO L. Research on mechanical properties of shape memory alloy bump[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [19] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks,2002. [20] 刘金琨. 先进PID控制MATLAB仿真[M]. 2版. 北京:电子工业出版社, 2004. LIU J K.MATLAB simulation of advanced PID control[M].2nd ed. Beijing:Publishing House of Electronics Industry, 2004(in Chinese). |