[1] |
KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:A tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:588.
|
[2] |
MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-607.
|
[3] |
CHIRARATTANANON P, MA K Y, CHENG R, et al. Wind disturbance rejection for an insect-scale flapping-wing robot[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE Press, 2015:60-67.
|
[4] |
MA K Y, CHIRARATTANANON P, WOOD R J. Design and fabrication of an insect-scale flying robot for control autonomy[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2015:1558-1564.
|
[5] |
GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science, 2016, 352(6288):978-982.
|
[6] |
COLEMAN D, BENEDICT M, HRISHIKESHAVAN V, et al. Design, development and flight-testing of a robotic hummingbird[C]//AHS 71st Annual Forum, 2015:5-7.
|
[7] |
GROEN M, BRUGGEMAN B, REMES B, et al. Improving flight performance of the flapping wing MAV DelFly Ⅱ[C]//International Micro Air Vehicle Conference and Competition, 2010.
|
[8] |
GILLEBAART T, VAN ZUIJLEN A H, BIJL H. Aerodynamic analysis of the wing flexibility and the clap-and-peel motion of the hovering DelFly Ⅱ[C]//International Micro Air Vehicle Conference and Competitions 2011(IMAV 2011), 2011.
|
[9] |
DE CROON G, DE WAGTER C, REMES B D W, et al. Sky segmentation approach to obstacle avoidance[C]//2011 Aerospace Conference. Piscataway:IEEE Press, 2011:1-16.
|
[10] |
DE WAGTER C, TIJMONS S, REMES B D W, et al. Autonomous flight of a 20-gram flapping wing mav with a 4-gram onboard stereo vision system[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2014:4982-4987.
|
[11] |
KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094.
|
[12] |
PHAN H V, TRUONG Q T, PARK H C. Implementation of initial passive stability in insect-mimicking flapping-wing micro air vehicle[J]. International Journal of Intelligent Unmanned Systems, 2015, 3(1):18-38.
|
[13] |
GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight[C]//Conference Towards Autonomous Robotic Systems. Berlin:Springer, 2013:90-100.
|
[14] |
FESTO CORPORATE. eMotionButterflies[EB/OL]. (2020-01-02)[2020-01-02]. https://www.festo.com/group/de/cms/10216.htm.
|
[15] |
MICHELSON R C. Novel approaches to miniature flight platforms[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2004, 218(6):363-373.
|
[16] |
SHYY W, AONO H, KANG C,et al. An introduction to flapping wing aerodynamics[M]. Cambridge:Cambridge University Press, 2013:90-175.
|
[17] |
DUDLEY R. The biomechanics of insect flight:Form, function, evolution[M]. Princeton:Princeton University Press, 2002:3-35.
|
[18] |
NAN Y, KARÁSEK M, LALAMI M E, et al. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2017, 12(2):026010.
|
[19] |
AU L T K, PHAN H V, PARK H C. Comparison of aerodynamic forces and moments calculated by three-dimensional unsteady blade element theory and computational fluid dynamics[J]. Journal of Bionic Engineering, 2017, 14(4):746-758.
|
[20] |
PHAN H V, KANG T, PARK H C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control[J]. Bioinspiration & Biomimetics, 2017, 12(3):036006.
|
[21] |
WOOTTON R J. Support and deformability in insect wings[J]. Journal of Zoology, 1981, 193(4):447-468.
|
[22] |
HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal, 2007, 45(5):1066-1079.
|
[23] |
KANG C, SHYY W. Passive wing rotation in flexible flapping wing aerodynamics[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA,2012:2763.
|
[24] |
MOUNTCASTLE A M, COMBES S A. Wing flexibility enhances load-lifting capacity in bumblebees[J]. Proceedings of the Royal Society B:Biological Sciences, 2013, 280(1759):20130531.
|
[25] |
WALKER S M, THOMAS A L R, TAYLOR G K. Deformable wing kinematics in free-flying hoverflies[J]. Journal of the Royal Society Interface, 2009, 7(42):131-142.
|
[26] |
NAN Y, KARÁSEK M, LALAMI M E, et al. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2017, 12(2):026010.
|
[27] |
PHAN H V, TRUONG Q T, AU T K L, et al. Optimal flapping wing for maximum vertical aerodynamic force in hover:Twisted or flat?[J]. Bioinspiration & Biomimetics, 2016, 11(4):046007.
|
[28] |
PHAN H V, TRUONG Q T, PARK H C. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight[J]. Bioinspiration & Biomimetics, 2017, 12(3):036009.
|
[29] |
PHAN H V, PARK H C. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot[J]. Bioinspiration & Biomimetics, 2018, 13(3):036009.
|