ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (12): 127779-127779.doi: 10.7527/S1000-6893.2022.27779
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yuanyuan HE(), Hang ZHANG, Qichen WANG, Xuan YANG
Received:
2022-07-08
Revised:
2022-08-30
Accepted:
2022-10-25
Online:
2023-06-25
Published:
2022-11-04
Contact:
Yuanyuan HE
E-mail:appleyuanyuan@bit.edu.cn
Supported by:
CLC Number:
Yuanyuan HE, Hang ZHANG, Qichen WANG, Xuan YANG. Effect of stiffness and wingtip shape on aerodynamic lift and efficiency of flapping wing rotors[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127779-127779.
1 | JONES K D, BRADSHAW C J, PAPADOPOULOS J, et al. Bio-inspired design of flapping-wing micro air vehicles[J]. The Aeronautical Journal, 2005, 109(1098): 385-393. |
2 | DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly [J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97. |
3 | PHAN H V, PARK H C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions[J]. Progress in Aerospace Sciences, 2019, 111: 100573. |
4 | SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327. |
5 | MISHRA S, TRIPATHI B, GARG S, et al. Design and development of a bio-inspired flapping wing type micro air vehicle[J]. Procedia Materials Science, 2015, 10: 519-526. |
6 | YANG L J, FENG A L, LEE H C, et al. The three-dimensional flow simulation of a flapping wing[J]. Journal of Marine Science and Technology, 2018, 26(3): 2. |
7 | HU H, KUMAR A G, ABATE G, et al. An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight[J]. Aerospace Science and Technology, 2010, 14(8): 575-586. |
8 | KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094. |
9 | WU J H, ZHOU C. Review on aerodynamics of bionic micro air vehicle in hovering flight[J]. Acta Aerodynamica Sinica, 2018, 36(1): 64-79. |
10 | GUO S J, LI D C, MATTEO N, et al. Design, experiment and aerodynamic calculation of a flapping wing rotor micro aerial vehicle[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
11 | WU J H, ZHOU C, ZHANG Y L. Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight[J]. AIAA Journal, 2017, 55(4): 1265-1278. |
12 | 周超, 吴江浩. 微型扑旋翼飞行器悬停的空气动力学研究[J]. 无人系统技术, 2018, 1(4): 33-42. |
ZHOU C, WU J H. Aerodynamics of micro flapping rotary wings in hovering flight[J]. Unmanned Systems Technology, 2018, 1(4): 33-42 (in Chinese). | |
13 | 谢浩然, 贺媛媛, 陶志坚. 扑旋翼飞行器气动特性分析及机翼拓扑优化设计[J]. 南京航空航天大学学报, 2020, 52(2): 280-287. |
XIE H R, HE Y Y, TAO Z J. Aerodynamic characteristics analysis and topology optimization design of wing of flapping rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 280-287 (in Chinese). | |
14 | CHEN S, WANG L, HE Y Y, et al. Aerodynamic performance of a flyable flapping wing rotor with passive pitching angle variation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9176-9184. |
15 | 余春锦, 昂海松. 柔性膜微型扑翼飞行器气动力的数值研究[J]. 中国科学技术大学学报, 2009, 39(12): 1305-1310. |
YU C J, ANG H S. Numerical study of aerodynamics for flexible membrane flapping-wing MAV[J]. Journal of University of Science and Technology of China, 2009, 39(12): 1305-1310 (in Chinese). | |
16 | DU G, SUN M. Effects of wing deformation on aerodynamic forces in hovering hoverflies[J]. The Journal of Experimental Biology, 2010, 213(Pt 13): 2273-2283. |
17 | HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199. |
18 | 高强, 徐江荣, 王关晴. 柔性扑翼弦向形变气动特性的数值研究[J]. 杭州电子科技大学学报(自然科学版), 2017, 37(6): 86-90. |
GAO Q, XU J R, WANG G Q. Numerical simulation of the flapping wing with chordwise flexibility on the aerodynamic characteristics[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2017, 37(6): 86-90 (in Chinese). | |
19 | LIN C S, HWU C, YOUNG W B. The thrust and lift of an ornithopter’s membrane wings with simple flapping motion[J]. Aerospace Science and Technology, 2006, 10(2): 111-119. |
20 | NAN Y H, KARÁSEK M, LALAMI M E, et al. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2017, 12(2): 026010. |
21 | ZHOU C, ZHANG Y L, WU J H. Effect of flexibility on unsteady aerodynamics forces of a purely plunging airfoil[J]. Chinese Journal of Aeronautics, 2020, 33(1): 88-101. |
22 | FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 4016006. |
23 | LI H, GUO S. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number[J]. Royal Society Open Science, 2018, 5(3): 171307. |
24 | GUO S, LI H, ZHOU C, et al. Analysis and experiment of a bio-inspired flyable micro flapping wing rotor[J]. Aerospace Science and Technology, 2018, 79: 506-517. |
25 | 苏醒. 微型扑旋翼飞行器设计与试验[D]. 北京: 北京理工大学, 2017: 64-74. |
SU X. The design and experiment of micro flapping wing rotor[D]. Beijing: Beijing Institute of Technology, 2017: 64-74 (in Chinese). | |
26 | DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092-3099. |
27 | SUN Y, LI D C, JIANG J Q, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[C]∥2017 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2018: 29-33. |
28 | CHEN S, WANG L, GUO S, et al. A bio-inspired flapping wing rotor of variant frequency driven by ultrasonic motor[J]. Applied Sciences, 2020, 10: 412. |
29 | 茹伟伟. 蜻蜓仿生翼设计及气动特性研究[D]. 长春: 长春工业大学, 2022. |
RU W W. Design of dragonfly-like wing and research on its aerodynamic characteristics[D]. Changchun: Changchun University of Technology, 2022 (in Chinese). | |
30 | 韩慧. 基于刚度相似性的扑翼结构设计与实验研究[D]. 北京: 北京理工大学, 2022: 22-30. |
HAN H. Design and experimental study of flapping wing structure based on stiffness similarity [D]. Beijing: Beijing Institute of Technology, 2022: 22-30 (in Chinese). | |
31 | CHEN L, ZHANG Y L, WU J H. Study on lift enhancement of a flapping rotary wing by a bore-hole design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 1315-1333. |
32 | XIE C M, HUANG W X. Vortex interactions between forewing and hindwing of dragonfly in hovering flight[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 24-29. |
[1] | . Research Progress on fluid structure interaction of bionic flexible flapping wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | Zi-Wen ZHU. A review of key technologies of bird inspired flapping-wing micro aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | Yuanyuan HE, Xuan YANG, Hui HAN, Qichen WANG, Hang ZHANG. A dragonfly-like flapping wing structure based on geometry and stiffness similarity [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227987-227987. |
[4] | Hechao ZHENG, Jianhui WANG, Ziyang HU, Zhonghai ZHANG, Guangping HE. Test of aerodynamic modeling accuracy of bird⁃scale flapping⁃wing vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127525-127525. |
[5] | LI Kangkang, CHEN Weiwei. Variable stiffness design of flapping wings and its effects on lift and thrust [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 423785-423785. |
[6] | LIU Jing, WANG Chao, XIE Peng, ZHOU Chaoying. Development of insect-like flapping wing micro air vehicle based on PD control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 223678-223678. |
[7] | ZHANG Wei, LIU Xinjie, LIU Yan, WANG Wenbo, ZHANG Boli. Flapping mechanism with elastic components: dynamic analysis and experiment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 423559-423559. |
[8] | ZHANG Wei, LIU Guangze, ZHANG Boli. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(9): 421966-421979. |
[9] | WANG Ying;ZHANG Guang-jun;CHEN Da-zhi. Tether Insect Motion Parameters Measurement System Based on Stereo Vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(6): 733-737. |
[10] | HOU Yu;FANG Zong-de;LIU Lan;FU Wei-ping. Dynamic Analysis and Engineering Design of Biomimetic Flapping-wing Micro Air Vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(2): 173-178. |
[11] | ZHANG Hongzhi, SONG Bifeng, SUN Zhongchao, WANG Liang. Driving mechanism of flapping wing aircraft: Review and prospect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 24024-024024. |
[12] | NIAN Peng, SONG Bifeng, XUAN Jianlin, WANG Siqi. Modeling method for propulsion system of flapping wing vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224646-224646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341