[1] |
KHAN Z, STEELMAN K, AGRAWAL S. Development of insect thorax based flapping mechanism[C]//IEEE International Conference on Robotics & Automation, 2009:3651-3656.
|
[2] |
CHEN J S, CHEN J Y, CHOU Y F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound and Vibration, 2008, 313(3):643-654.
|
[3] |
WOOD R J, CHO K J, HOFFMAN K. A novel multi-axis force sensor for microrobotics applications[J]. Smart Materials and Structures, 2009, 18(12):1-7.
|
[4] |
COMBES S A, DANIEL T L. Flexural stiffness in insect wings I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 2003, 206(17):2979-2987.
|
[5] |
ISHIHARA D, YAMASHITA Y, HORIE T, et al. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing[J]. Journal of Experimental Biology, 2009, 212(23):3882-3891.
|
[6] |
ENNOS A R. The importance of torsion in the design of insect wings[J]. Journal of Experimental Biology, 1988, 140(1):137-160.
|
[7] |
MOORE M N J. Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing[J]. Physics of Fluids, 2015, 27(9):1-7.
|
[8] |
HOU D, YIN Y, ZHONG Z, et al. A new torsion control mechanism induced by blood circulation in dragonfly wings[J]. Bioinspir Biomim, 2015, 10(1):1-9.
|
[9] |
LIN C S, HWU C, YOUNG W B. The thrust and lift of an ornithopter's membrane wings with simple flapping motion[J]. Aerospaceence & Technology, 2006, 10(2):111-119.
|
[10] |
ROGET B, HARMON R, GRAUER J, et al. Computational study of flexible wing ornithopter flight[J]. Journal of Aircraft, 1971, 46(6):2016-2031.
|
[11] |
WANG Q, GOOSEN J F L, VAN KEULEN F. An efficient fluid-structure interaction model for optimizing twistable flapping wings[J]. Journal of Fluids and Structures, 2017, 73(1):82-99.
|
[12] |
BAEK S S. Efficient resonant drive of flapping-wing robots[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems, 2009:2854-2860.
|
[13] |
KHATAIT J P, SETH B. Compliant design for flapping mechanism:A minimum torque approach[J]. Mechanism and Machine Theory, 2006, 41(1):3-16.
|
[14] |
TANAKA H, WHITNEY J P, WOOD R J. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight[J]. Integrative and Comparative Biology, 2011, 51(1):142-150.
|
[15] |
ZHAO L, HUANG Q, DENG X, et al. Aerodynamic effects of flexibility in flapping wings[J]. Journal of The Royal Society Interface, 2010, 7(44):485-497.
|
[16] |
贺红林,周翔.柔性扑翼非定常涡格法气动计算的改进与实现[J].航空学报,2010,31(6):1121-1126. HE H L, ZHOU X. Implementation of an improved unsteady vortex lattice method for flexible flapping-wing aerodynamic computation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1121-1126(in Chinese).
|
[17] |
张威,刘光泽,张博利.扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J].航空学报,2018,39(9):1-12. ZHANG W, LIU G Z, ZHANG B L. Energy comsumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):1-12(in Chinese).
|
[18] |
HAM R V, DAMME M V, VERRELST B, et al. Maccepa, the mechanically adjustable compliance and controllable equilibrium position actuator:A 3DOF joint with two independent compliances[J]. International Applied Mechanics, 2007, 43(4):467-474.
|
[19] |
HAM R V, VANDERBORGHT B, DAMME M V, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator:Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10):761-768.
|
[20] |
VANDERBORGHT B, TSAGARAKIS N G, SEMINI C, et al. MACCEPA 2.0 compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1):55-65.
|
[21] |
LI K K, JIANG H Z, WANG S Y, et al. A soft robotic fish with variable-stiffness decoupled mechanisms[J]. Journal of Bionic Engineering, 2018, 15(4):599-609.
|
[22] |
SHIN H. Antagonistic stiffness optimization of redundantly actuated parallel manipulators in a predefined workspace[J]. IEEE-ASME Transactions on Mechatronics, 2013, 18(3):1161-1169.
|
[23] |
LAVATE A. Variable stiffness actuators:A general review[J]. International Journal of Engineering and Technical Research, 2015, 4(7):201-205.
|
[24] |
MUELLER D, GUPTA K. Incorporation of passive wing folding in flapping wing miniature air vehicles[C]//ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009:797-805.
|
[25] |
HE J F, JIANG H Z, TONG Z Z. Modal control of a hydraulically driven redundant actuated fully parallel mechanism[J]. Journal of Vibration and Control, 2017, 23(10):1585-1592.
|
[26] |
曾锐,昂海松.仿鸟复合振动的扑翼气动分析[J].南京航空航天大学学报,2003(1):6-12. ZENG R, ANG H S. A aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics,2003, 35(1):6-12(in Chinese).
|
[27] |
曾锐, 昂海松, 梅源. 柔性扑翼的气动特性研究[J]. 应用力学学报, 2005,22(1):4-10. ZENG R, ANG H S, MEI Y. Aerodynamic computation of flexible flapping-wing[J]. Chinese Jounal of Applied Mechanics, 2005,22(1):4-10(in Chinese).
|
[28] |
ZHIGANG R J, ZHIGANG W, CHAO Y. Dynamic stiffness testing-based flutter analysis of a fin with an actuator[J]. Chinese Journal of Aeronautics, 2015, 28(5):1400-1407.
|
[29] |
ABEACH L A, NEFTI-MEZIANI S, THEODORIDIS T, et al. A variable stiffness soft gripper using granular jamming and biologically inspired pneumatic muscles[J]. Journal of Bionic Engineering, 2018,15(2):236-246.
|
[30] |
LI K K, JIANG H Z, CUI Z, et al. Variable stiffness design of redundantly actuated planar rotational parallel mechanisms[J]. Chinese Journal of Aeronautics, 2017, 30(2):818-826.
|