[1] GERDES J W, GUPTA S K, WILKERSON S. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of Mechanism and Robotics, 2012, 4(2):021003.1-021003.11. [2] 李峙岳,昂海松.仿鸟扑动飞行器传动机构设计[J].江苏航空,2012(3):20-23. LI Z Y, ANG H S. Design of transmission mechanism of bird-like flapping aircraft[J].Jiangsu Aviation, 2012(3):20-23(in Chinese). [3] 周凯,方宗德,曹雪梅,等.单曲柄双摇杆扑翼驱动机构的优化设计[J].航空动力学报,2008,23(1):184-188. ZHOU K, FANG Z D, CAO X M,et al. Optimal design of single crank double rocker flapping-wing drive mechanism[J].Journal of Aerospace Power, 2008,23(1):184-188(in Chinese). [4] PORNSIN-SIRIRAK T, TAI Y, HO C, et al. Microbat:A palm-sized electrically powered ornithopter[C]//Proceedings of the NASA/JPL Workshop on Biomorphic Robotics.Washington,D.C.:NASA,2001. [5] TSAI B J, FU Y C. Design and aerodynamic analysis of a flapping-wing micro aerial vehicle[J]. Aerospace Science and Technology, 2009, 13(7):383-392. [6] 张亚锋,宋笔锋,马红萍,等.仿生扑翼机构的优化设计[J].机械设计与研究,2008(4):23-25. ZHANG Y F, SONG B F, MA H P, et al.Optimization design of bionic flapping-wing mechanism[J]. Mechanical Design & Research, 2008(4):23-25(in Chinese). [7] 孙泽江. 扑翼结构的仿生飞行器研究[D].沈阳:沈阳理工大学,2017:23-24. SUN Z J. Research on bionic aircraft with flapping wing structure[D]. Shenyang:Shenyang Ligong University, 2017:23-24(in Chinese). [8] 苏汉平. 仿鸟扑翼飞行器结构设计与气动特性研究[D].天津:中国民航大学,2017:34-42. SU H P. Structural design and aerodynamic characteristics of bird-like flapping-wing aircraft[D].Tianjin:Civil Aviation University of China, 2017:34-42(in Chinese). [9] 吉爱红,沈欢.双曲柄摇杆无相差双对翼扑翼飞行器及其工作方法:CN108248856A[P]. 2018-07-06. JI A H, SHEN H. Double-crank rocker without phase difference double-wing flapping-wing aircraft and its working method:CN108248856A[P]. 2018-07-06(in Chinese). [10] HSU C K, EVANS J, VYTLA S, et al. Development of flapping wing micro air vehicles -design, CFD, experiment and actual flight[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2010. [11] 陈世杰. 扑翼式飞行器的驱动机构研究[D].西安:西安工业大学,2015:9-10. CHEN S J. Research on the driving mechanism of flapping-wing aircraft[D]. Xi'an:Xi'an Technological University, 2015:9-10(in Chinese). [12] 徐兵,朱伟平,陈强,等. 一种曲柄滑块式扑翼飞行器:CN205707352U[P]. 2016-11-23. XU B, ZHU W P, CHEN Q, et al. A crank-slider flapping-wing aircraft:CN205707352U[P]. 2016-11-23(in Chinese). [13] 胡峪,符旭阳,吴成富,等. 一种摇橹式扑翼控制机构:CN108275270A[P]. 2018-07-13. HU Y, FU X Y, WU C F, et al. A flapping-wing shaking control mechanism:CN108275270A[P]. 2018-07-13(in Chinese). [14] 刘聪. 仿生扑翼飞行器结构设计及其动力学仿真研究[D]. 哈尔滨:哈尔滨工业大学,2010:18-21. LIU C. Structural design and dynamics simulation study of bionic flapping-wing vehicle[D]. Harbin:Harbin Institute of Technology, 2010:18-21(in Chinese). [15] 姜洪利. 两段式扑翼飞行器结构设计与仿真分析[D].哈尔滨:哈尔滨工业大学,2017:18-33. JIANG H L. Structural design and simulation analysis of two-stage flapping-wing aircraft[D]. Harbin:Harbin Institute of Technology, 2017:18-33(in Chinese). [16] 赵志芳,齐明思,冯靖凯,等.基于四连杆机构的扑翼设计与仿真[J].机械传动,2017,41(11):87-91. ZHAO Z F, QI M S, FENG J K, et al. Design and simulation of flapping wing based on four-bar linkage mechanism[J]. Journal of Mechanical Transmission, 2017, 41(11):87-91(in Chinese). [17] 黄鸣阳,肖天航,昂海松.多段柔性变体扑翼飞行器设计[J].航空动力学报,2016,31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of multi-segment flexible variant flapping-wing aircraft[J]. Journal of Aerospace Power, 2016,31(8):1838-1844(in Chinese). [18] 华兆敏,侯宇,朱建阳,等.三段式扑翼机构设计及气动力特性分析[J].计算机仿真,2019,36(5):42-47,72. HUA Z M, HOU Y, ZHU J Y, et al. Design of three-stage flapping wing mechanism and analysis of aerodynamic characteristics[J].Computer Simulation, 2019,36(5):42-47,72(in Chinese). [19] 徐一村,宗光华,毕树生,等.空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(1):204-208. XU Y C, ZONG G H, BI S S, et al. Design analysis of spatial crank rocker flapping-wing mechanism[J]. Journal of Aerospace Power, 2009,24(1):204-208(in Chinese). [20] 魏榛,贾立超,杨基明.一种平行曲柄连杆扑翼机构的设计、优化与实现[J].力学与实践,2011,33(2):62-66,95. WEI Z, JIA L C, YANG J M. Design, optimization and implementation of a parallel crank connecting rod flapping-wing mechanism[J]. Mechanics in Engineering, 2011,33(2):62-66,95(in Chinese). [21] 魏榛,高东奇,贾立超,等.一种用于研究鹰蛾悬停飞行的扑翼实验装置[J].实验力学,2010,25(4):393-400. WEI Z, GAO D Q, JIA L C, et al. A flapping-wing experimental device for studying hovering flight of hawk moth[J]. Journal of Experimental Mechanics, 2010,25(4):393-400(in Chinese). [22] Osaka slow fliers club[EB/OL].(2008-01-04)[2019-12-04]. http://blog.goo.ne.jp/flappingwing [23] DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009, 1(2):71-97. [24] GEORGE R B. Design and analysis of a flapping wing mechanism for optimization[D].Utah:Brigham Young University, 2015:25-38. [25] 李博扬. 扑翼三维扑动实验系统与高效机制研究[D].西安:西北工业大学,2015:19-21. LI B Y. Three-dimensional flapping experiment system and high-efficiency mechanism research[D]. Xi'an:Northwestern Polytechnical University, 2015:19-21(in Chinese). [26] 王利光,宋笔锋,杨文青,等. 一种圆柱凸轮扑翼驱动机构:CN202138538U[P]. 2012-02-08. WANG L G, SONG B F, YANG W Q, et al. A cylindrical cam flapping-wing driving mechanism:CN202138538U[P]. 2012-02-08(in Chinese). [27] 丁长涛,周泽斌,陈伟,等. 一种圆柱凸轮万向节式仿鸟扑翼飞行装置:CN108454850A[P]. 2018-08-28. DING C T, ZHOU Z B, CHEN W, et al. A cylindrical cam universal joint type bird-like flapping-wing flying device:CN108454850A[P]. 2018-08-28(in Chinese). [28] 丁长涛,徐日良,钱海英,等. 一种线轮调幅卷膜式仿鸟扑翼飞行装置:CN108275269A[P]. 2018-07-13. DING C T, XU R L, QIAN H Y, et al. A reel-type roll-to-roll film-like bird flapping-wing flying device:CN108275269A[P]. 2018-07-13(in Chinese). [29] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:A tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2012. [30] 付鹏,杨文青,王利光,等. 一种用于微型扑翼实验的驱动装置:CN104570924A[P]. 2015-04-29. FU P, YANG W Q, WANG L G, et al. A driving device for micro flapping-wing experiment:CN104570924A[P]. 2015-04-29(in Chinese). [31] 付鹏. 微型扑翼飞行器风洞实验方法与应用研究[D].西安:西北工业大学,2017:18-21. FU P. Wind tunnel experimental method and application research of micro flapping wing aircraft[D]. Xi'an:Northwestern Polytechnical University, 2017:18-21(in Chinese). [32] 冷烨,张卫平,周岁,等.仿生蝴蝶飞行器设计分析[J].机械设计与研究,2019,35(4):32-35,42. LENG Y, ZHANG W P, ZHOU S, et al. Design analysis of bionic butterfly aircraft[J]. Mechanical Design & Research, 2019,35(4):32-35,42(in Chinese). [33] YAN X J, LIU Z, QI M, et al. Low voltage electromagnetically driven artificial flapping wings[C]//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).Piscataway:IEEE Press, 2016:1149-1152. [34] 张钰,刘志伟.基于电磁驱动的微扑翼飞行器驱动器振动特性[J].传感器与微系统,2019,38(3):11-13. ZHANG Y, LIU Z W. Vibration characteristics of micro flapping-wing aircraft actuator based on electromagnetic drive[J]. Transducer and Microsystem Technology, 2019,38(3):11-13(in Chinese). [35] 方勇纯,钱辰,胡天帅,等. 一种基于电磁致动器驱动的微型扑翼机构:CN109823533A[P]. 2019-05-31. FANG Y C, QIAN C, HU T S, et al. A micro flapping-wing mechanism driven by electromagnetic actuator:CN109823533A[P]. 2019-05-31(in Chinese). [36] MENG K, ZHANG W, CHEN W, et al. The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle[J]. Microsystem Technologies, 2012, 18(1):127-136. [37] LIU Z W, YAN X J, QI M J, et al. Design of flexible hinges in electromagnetically driven artificial flapping-wing insects for improved lift force[J]. Micromech, Microeng, 2019,29(1):015011. [38] 张卫平,楼星粱,邹阳,等. 可变共振频率电磁驱动式双驱动微扑翼飞行器:CN104260887A[P]. 2015-01-07. ZHANG W P, LOU X L, ZOU Y, et al. Variable resonance frequency electromagnetically driven dual-drive micro flapping wing aircraft:CN104260887A[P]. 2015-01-07(in Chinese). [39] YOON S, KANG L H, JO S. Development of air vehicle with active flapping and twisting of wing[J]. Jilin University Journal of Bionic Engineering:English Version, 2011, 8(1):1-9. [40] 宋海龙. 微型扑翼飞行器传动系统设计及新型扑翼形式概念研究[D]. 西安:西北工业大学,2005:48-51. SONG H L. The design of the transmission system of the mini flapping wing aircraft and the conceptual research of the new flapping wing form[D]. Xi'an:Northwestern Polytechnical University, 2005:48-51(in Chinese). [41] ZHANG X M, CHAU F S, QUAN C, et al. A study of the static characteristics of a torsion micromirror[J]. Sensors and Actuators A Physical, 2001, 90(1-2):73-81. [42] DEGANI O, SOCHER E, LIPSON A, et al. Pull-in study of an electrostatic torsion microactuator[J]. Journal of Microelectromechanical Systems, 1998, 7(4):373-379. [43] DEGANI O, NEMIROVSKY Y. Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions[J]. Journal of Microelectromechanical Systems, 2002, 11(1):20-26. [44] 侯宇,方宗德,刘岚,等.微扑翼飞行器静电驱动机构的机电耦合特性研究[J].机械科学与技术,2005(3):303-306,370. HOU Y, FANG Z D, LIU L, et al. Study on the electromechanical coupling characteristics of electrostatic drive mechanism of micro flapping wing aircraft[J]. Mechanical Science and Technology For Aerospace Engineering, 2005(3):303-306,370(in Chinese). [45] SUZUKI K, SHIMOYAMA I, MIURA H. Insect-model based microrobot with elastic hinges[J]. Journal of Microelectromechanical Systems, 1994, 3(1):4-9. [46] 杨艺,车云龙.毫米级静电微扑翼驱动器的结构设计、工艺与测试[J].传感器与微系统,2018,37(1):91-95. YANG Y, CHE Y L. Structural design, process and test of millimeter-level electrostatic micro flapping wing actuator[J]. Transducer and Microsystem Technology, 2018,37(1):91-95(in Chinese). [47] DICKINSON M H. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960. [48] YAN X J, QI M, LIN L. Self-lifting artificial insect wings via electrostatic flapping actuators[C]//Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Piscataway:IEEE Press, 2015. [49] 杨大智. 智能材料与智能系统[M].天津:天津大学出版社,2000:1-15. YANG D Z. Intelligent materials and intelligent systems[M]. Tianjin:Tianjin University Press, 2000:1-15(in Chinese). [50] 刘仁鑫,王万章.压电材料在汽车技术中的应用[J].拖拉机与农用运输车,2007(5):4-5. LIU R X, WANG W Z. Application of piezoelectric materials in automobile technology[J]. Tractor & Farm Transporter, 2007(5):4-5(in Chinese). [51] 李道春,向锦武,徐威,等. 一种微型扑翼关节:CN106240816A[P]. 2016-12-21. LI D C, XIANG J W, XU W, et al. A macro flapping-wing joint:CN106240816A[P]. 2016-12-21(in Chinese). [52] 田思玉. 压电扑翼微型飞行器翅翼设计与动力学分析[D].成都:电子科技大学,2017:14-17. TIAN S Y. Design and dynamic analysis of the wing wing of piezoelectric flapping wing micro aircraft[D]. Chengdu:University of Electronic Science and Technology of China, 2017:14-17(in Chinese). [53] 刘岚,方宗德,侯宇,等.仿生微扑翼飞行器的翅翼设计与优化[J].机械科学与技术,2005(3):330-334. LIU L, FANG Z D, HOU Y, et al. Wing design and optimization of bionic micro flapping wing aircraft[J]. Mechanical Science and Technology For Aerospace Engineering, 2005(3):330-334(in Chinese). [54] 袁晰,王晓宇,王浩威,等.电压特性对压电纤维复合物驱动性能的影响[J].中国有色金属学报,2019,29(2):343-349. YUAN X, WANG X Y, WANG H W, et al. The influence of voltage characteristics on the driving performance of piezoelectric fiber composites[J]. The Chinese Journal of Nonferrous Metals, 2019,29(2):343-349(in Chinese). [55] LIN X J, ZHOU K C, ZHANG X Y, et al. Development, modeling and application of piezoelectric fiber composites[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1):98-107. [56] 吴高华,杨依领,张金,等. 柔性压电纤维驱动的仿生扑翼机器人:CN110143278A[P]. 2019-08-20. WU G H, YANG Y L, ZHANG J, et al. Bionic flapping wing robot driven by flexible piezoelectric fiber:CN110143278A[P]. 2019-08-20(in Chinese). [57] PENG Y, LIU L, ZHANG Y, et al. A smooth impact drive mechanism actuation method for flapping wing mechanism of bio-inspired micro air vehicles[J]. Microsystem Technologies, 2017(2):1-7. [58] SITTI M. PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[C]//Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on.Piscataway:IEEE Press, 2001. [59] 周皓宇,张祥,黄鸣阳.人工肌肉及其在扑翼飞行技术中的应用探析[J].科技创新导报,2015,12(20):84-85. ZHOU H Y, ZHANG X, HUANG M Y. Analysis of artificial muscle and its application in flapping wing flight technology[J]. Science and Technology Innovation Herald, 2015,12(20):84-85(in Chinese). [60] 李晓锋,梁松苗,李艳芳,等.仿生材料电活性聚合物"人工肌肉"的研究进展[J].高分子通报,2008(8):134-145. LI X F, LIANG S M, LI Y F, et al. Research progress of bionic material electroactive polymer "artificial muscle"[J]. Polymer Bulletin, 2008(8):134-145(in Chinese). [61] 苏生荣,应申舜.面向机器人驱动的人工肌肉技术研究进展[J].机械科学与技术,2009,28(6):834-840. SU S R, YING S S. Research progress of robot-driven artificial muscle technology[J]. Mechanical Science and Technology For Aerospace Engineering, 2009,28(6):834-840(in Chinese). [62] 徐兵. 基于人工肌肉的微扑翼驱动技术研究[D]. 厦门:厦门大学,2014:53-55. XU B. Research on driving technology of micro flapping wing based on artificial muscle[D]. Xiamen:Xiamen University, 2014:53-55(in Chinese). [63] 李洪谊,刘意杨,宋小康,等. 一种人工肌肉与电磁混合驱动的仿蝇机器人:CN101934520A[P]. 2011-01-05. LI H Y, LIU Y Y, SONG X K, et al. Fly-like robot driven by artificial muscle and electromagnetic hybrid driving:CN101934520A[P]. 2011-01-05(in Chinese). [64] 孙霁宇,宋泽来,吴薇,等. 一种用于可折叠扑翼微飞行器的自调节变形可折叠翼机构:CN208053632U[P]. 2018-11-06. SUN J Y, SONG Z L, WU W, et al. A self-adjusting deformable foldable wing mechanism for foldable flapping wing micro aircraft:CN208053632U[P]. 2018-11-06(in Chinese). [65] KIM H I, KIM D K, HAN J H. Study of flapping actuator modules using IPMC[J]. SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, 2007, 6524:65241A-65241A-12. [66] ENTOMOPTER A, MARS O, COLOZZA A,et al. Planetary exploration using biomimetics:an entomo-pterforflight on mars[C]//NIAC Fellows Conference. Washington,D.C.:NASA AmesResearch Center, 2001. [67] OGAWA N, HASHIMOTO M, TAKASAKI M, et al. Characteristics evaluation of PVC gel actuators[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems.Piscataway:IEEE Press, 2009. [68] 张威,刘光泽,张博利.扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J].航空学报, 2018, 39(9):421966. ZHANG W, LIU G Z, ZHANG B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):421966(in Chinese). [69] LAU G K, CHIN Y W, GOH T W, et al. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight[J]. IEEE Transactions on Robotics, 2014, 30(5):1187-1197. [70] 屠凯,侯宇,华兆敏,等.柔性空间扑翼机构的刚柔耦合动力特性分析[J].机械设计与制造,2019(7):215-219. TU K, HOU Y, HUA Z M, et al. Analysis of rigid-flexible coupling dynamic characteristics of flexible spatial flapping wing mechanism[J]. Machinery Design & Manufacture, 2019(7):215-219(in Chinese). [71] NIAN P, SONG B F, XUAN J L, et al. A wind tunnel experimental study on the flexible flapping wing with an attached airfoil to the root[J]. IEEE Access, 2019(7):47891-47903. |