Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (17): 529984-529984.doi: 10.7527/S1000-6893.2024.29984
• Reviews • Previous Articles
Dong XUE1,2, Ziwen ZHU1,2, Bifeng SONG1,2()
Received:
2023-12-15
Revised:
2024-01-24
Accepted:
2024-01-30
Online:
2024-02-20
Published:
2024-02-07
Contact:
Bifeng SONG
E-mail:sbf@nwpu.edu.cn
Supported by:
CLC Number:
Dong XUE, Ziwen ZHU, Bifeng SONG. Key technologies of bird inspired flapping-wing micro aerial vehicles: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529984-529984.
Table 2
Research results on dynamics models of FMAVs
作者 | 动力学模型 | 是否考虑扑动翼运动的影响/扑动翼自由度 | 是否考虑扑动翼柔性 | 气动力模型 | 适用对象 |
---|---|---|---|---|---|
Taylor和Thomas[ | 线化模型 | 否 | 否 | 试验测量 | 沙漠蝗虫 |
孙茂和熊燕[ | 线化模型 | 否 | 否 | 三维Navier-Stokes方程 | 黄蜂 |
孙茂等[ | 线化模型 | 否 | 否 | 三维Navier-Stokes方程 | 昆虫 |
Doman等[ | 6DOF | 否 | 否 | 准定常叶素理论 | 仿昆虫FMAVs |
Deng等[ | 6DOF | 否 | 否 | 准定常叶素理论 | 昆虫 |
Khan和Agrawal[ | 6DOF | 否 | 否 | 准定常叶素理论 | 昆虫 |
Gebert等[ | 3刚体模型 | 3 | 否 | FMAVs | |
Loh和Cook[ | 3刚体模型 | 2 | 否 | 试验测量 | FMAVs |
Buler等[ | 3刚体模型 | 2 | 否 | 非定常涡格法/准定常叶素理论 | FMAVs |
Dietl和Garcia[ | 4刚体模型 | 2 | 否 | 准定常叶素理论 | FMAVs |
Bolender[ | 4刚体模型 | 2 | 否 | 准定常叶素理论 | FMAVs |
Grauer和Hubbard[ | 5刚体模型 | 1 | 否 | 准定常叶素理论 | FMAVs |
Orlowski等[ | 3刚体模型 | 3 | 否 | 准定常叶素理论 | FMAVs |
Jahanbin等[ | 3刚体模型 | 1 | 是 | BIFMAVs | |
Roccia Bruno等[ | 3刚体模型 | 3 | 是 | 非定常涡格法 | FMAVs |
Khosravi和Novinzadeh[ | 3刚体模型 | 3 | 否 | 准定常叶素理论 | FMAVs |
Table 3
Control systems of FMAVs
控制分类 | 控制方法 | 作者 | 动力学模型 | 气动力 | 控制量 | 被控量 | 研究对象 |
---|---|---|---|---|---|---|---|
线性控制 | 状态反馈 | Rifaï等[ | 6自由度方程 | 准定常模型 | 扑动翼扑动幅度 | 位姿 | FMAVs仿真 |
Tahmasian等[ | 6自由度方程 | 准定常模型 | 扑动翼扑动幅度 | 轨迹 | FMAVs仿真 | ||
Torres等[ | 6自由度方程 | 正弦函数 | 尾翼偏角 | 位姿 | BIFMAVs仿真 | ||
PID | Loh等[ | 多体动力学方程 | 试验模型 | 扑动翼运动参数+重心位置 | 位姿 | FMAVs仿真 | |
Roberts等[ | 尾翼偏角 | 轨迹跟踪 | Robo Raven IV仿真+飞行测试 | ||||
杨文青等[ | 副翼同向/差动偏转 | 位姿 | Dove飞行测试 | ||||
非线性控制 | 神经网络控制 | Cheng和Deng[ | 6自由度方程 | 准定常模型 | 扑动翼运动参数 | 位姿 | FMAVs仿真+飞行测试 |
贺威等[ | 6自由度方程 | 准定常模型 | 扑动翼扑动频率+尾翼偏角 | 位姿 | FMAVs仿真 | ||
无模型自适应控制 | Qian和Fang[ | 6自由度方程 | 扑动翼扑动频率 | 位姿 | FMAVs仿真 | ||
Wang等[ | 6自由度方程 | 尾翼角速度 | 俯仰 | FMAVs仿真 | |||
Khosravi和Novinzadeh[ | 3刚体动力学方程 | 准定常模型 | 扑动翼运动参数 | 位姿 | FMAVs仿真 | ||
模糊控制 | 徐文福等[ | 6自由度方程 | 准定常模型 | 扑动翼扑动频率+尾翼偏角 | 位姿+轨迹跟踪 | 哈尔滨工业大学“凤凰”飞行测试 | |
自抗扰控制 | 梁少然等[ | 6自由度方程 | 准定常模型 | 副翼同向/差动偏转 | 位姿 | Dove飞行测试 |
1 | SHYY W, AONO H, KANG C K, et al. An introduction to flapping wing aerodynamics[M]. New York: Cambridge University Press, 2013. |
2 | SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327. |
3 | BAYIZ Y, GHANAATPISHE M, FATHY H, et al. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization[J]. Bioinspiration & Biomimetics, 2018, 13(4): 046002. |
4 | GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Robo Raven: A flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft Robotics, 2014, 1(4): 275-288. |
5 | SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]∥Proceedings of the 28th International Congress of the Aeronautical Sciences. Brisbane: The International Council of the Aeronautical Sciences, 2012: 1148-1157. |
6 | 郑祥明. 微型飞行器非线性飞行动力学与智能控制研究[D]. 南京: 南京航空航天大学, 2008. |
ZHENG X M. Research on nonlinear flight dynamics and intelligent flight control of micro air vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). | |
7 | YANG W Q, SONG B F, SONG W P, et al. The effects of span-wise and chord-wise flexibility on the aerodynamic performance of micro flapping-wing[J]. Chinese Science Bulletin, 2012, 57(22): 2887-2897. |
8 | YANG W Q, WANG L G, SONG B F. Dove: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84. |
9 | 姜洪利. 两段式扑翼飞行器结构设计与仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
JIANG H L. Structural design and simulation analysis of a two-section flapping wing air vehicle[D].Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
10 | 张兵. 大型仿生扑翼飞行器飞行控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG B. The method of the flight control of large bionic flapping wing air craft[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
11 | 袁杰. 微型扑翼柔性翅翼变形及其气动力特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
YUAN J. Experimental study on flexible wings deformation and aerodynamic characteristics of micro flapping wings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
12 | PAN E Z, XU H, YUAN H, et al. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters[J]. Biomimetic Intelligence and Robotics, 2021, 1: 100002. |
13 | XU W F, PAN E Z, LIU J T, et al. Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment[J]. Chinese Journal of Aeronautics, 2022, 35(2): 235-249. |
14 | 贺威, 刘上平, 黄海丰, 等. 独立驱动的仿鸟扑翼飞行机器人的系统设计与实验[J]. 控制理论与应用, 2022, 39(1): 12-22. |
HE W, LIU S P, HUANG H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot[J]. Control Theory and Technology, 2022, 39(1): 12-22 (in Chinese). | |
15 | FU Q, WANG X Q, ZOU Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles[J]. Guidance, Navigation and Control, 2022, 2(1): 2250001. |
16 | HUANG H F, HE W, WANG J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5484-5494. |
17 | ZUFFEREY R, TORMO-BARBERO J, GUZMÁN M M, et al. Design of the high-payload flapping wing robot E-Flap[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3097-3104. |
18 | 中国日报陕西记者站. 3小时5分30 秒!西工大仿生飞行器再破自己创造的世界纪录![EB/OL]. (2023-10-06) [2023-12-01]. . |
China Daily Shaanxi Reporter Station. 3 hours, 5 minutes, and 30 seconds! Northwestern Polytechnical University’s biomimetic aircraft breaks its own world record once again![EB/OL]. (2023-10-06) [2023-12-01]. (in Chinese). | |
19 | 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1): 69-80. |
ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 69-80 (in Chinese). | |
20 | SHYY W, BERG M, LJUNGQVIST D. Flapping and flexible wings for biological and micro air vehicles[J]. Progress in Aerospace Sciences, 1999, 35(5): 455-505. |
21 | GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of Mechanisms and Robotics, 2012, 4(2): 21003. |
22 | 王利光. 微型扑翼飞行器系统设计与原理样机研究[D]. 西安: 西北工业大学, 2013. |
WANG L G. Research on the system design and development approach for biomimetic flapping-wing micro air vehicle[D]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese). | |
23 | CHIN D D, LENTINK D. Flapping wing aerodynamics: From insects to vertebrates[J]. Journal of Experimental Biology, 2016, 219(7): 920-932. |
24 | 薛栋, 宋笔锋, 宋文萍, 等. 仿鸟型扑翼飞行器气动/结构/飞行力学耦合研究进展[J]. 空气动力学学报, 2018, 36(1): 88-97. |
XUE D, SONG B F, SONG W P, et al. Advances in coupling aeroelasticity and flight dynamics of bird inspired FMAV[J]. Acta Aerodynamica Sinica, 2018, 36(1): 88-97 (in Chinese). | |
25 | GREENEWALT C H. Dimensional relationships for flying animals[J]. Miscellaneous Publications, 1962, 144: 1-46. |
26 | TAYLOR G K, NUDDS R L, THOMAS A L R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J]. Nature, 2003, 425: 707-711. |
27 | LENTINK D, DICKINSON M H. Rotational accelerations stabilize leading edge vortices on revolving fly wings[J]. Journal of Experimental Biology, 2009, 212(16): 2705-2719. |
28 | LEHMANN F O. The mechanisms of lift enhancement in insect flight[J]. Naturwissenschaften, 2004, 91(3): 101-122. |
29 | SANE S P. The aerodynamics of insect flight[J]. Journal of Experimental Biology, 2003, 206(23): 4191-4208. |
30 | SANE S P, DICKINSON M H. The control of flight force by a flapping wing: Lift and drag production[J]. Journal of Experimental Biology, 2001, 204(15): 2607-2626. |
31 | ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384: 626-630. |
32 | DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960. |
33 | KRUYT J W, VAN HEIJST G F, ALTSHULER D L, et al. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio[J]. Journal of the Royal Society, Interface, 2015, 12(105): 20150051. |
34 | LEHMANN F O M. The control of wing kinematics and flight forces in fruit flies (Drosophila spp.)[J]. Journal of Experimental Biology, 1998, 201(3): 385-401. |
35 | SUN M, TANG J. Lift and power requirements of hovering flight in Drosophila virilis[J]. Journal of Experimental Biology, 2002, 205(16): 2413-2427. |
36 | WILLMOTT A, ELLINGTON C, THOMAS A. Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, manduca sexta[J]. Philosophical Transactions of the Royal Society B, 1997, 352: 303-316. |
37 | LIU H, ELLINGTON C, KAWACHI K, et al. A computational fluid dynamic study of hawkmoth hovering[J]. Journal of Experimental Biology, 1998, 201(4): 461-477. |
38 | WANG J K, SUN M. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight[J]. Journal of Experimental Biology, 2005, 208(19): 3785-3804. |
39 | BOMPHREY R J, TAYLOR G K, THOMAS A L R. Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair[J]. Experiments in Fluids, 2009, 46(5): 811-821. |
40 | SHYY W. Aerodynamics of low Reynolds number flyers[M]. Cambridge: Cambridge University Press, 2008. |
41 | PENNYCUICK C J. Animal flight[M]. London: Edward Arnold (Publishers) Limited, 1972. |
42 | NORBERG U M. Vertebrate flight[M]. Berlin, Heidelberg: Springer Verlag, 1990. |
43 | SPEDDING G R, ROSÉN M, HEDENSTRÖM A. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds[J]. Journal of Experimental Biology, 2003, 206(14): 2313-2344. |
44 | HEDENSTRÖM A, ROSÉN M, SPEDDING G R. Vortex wakes generated by Robins Erithacus rubecula during free flight in a wind tunnel[J]. Journal of the Royal Society, Interface, 2006, 3(7): 263-276. |
45 | HENNINGSSON P, SPEDDING G R, HEDENSTRÖM A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel[J]. Journal of Experimental Biology, 2008, 211: 717-730. |
46 | HENNINGSSON P, MUIJRES F T, HEDENSTRÖM A. Time-resolved vortex wake of a common swift flying over a range of flight speeds[J]. Journal of the Royal Society, Interface, 2011, 8(59): 807-816. |
47 | JOHANSSON L C, HEDENSTRÖM A. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV)[J]. Journal of Experimental Biology, 2009, 212: 3365-3376. |
48 | MUIJRES F T, JOHANSSON L C, HEDENSTRÖM A. Leading edge vortex in a slow-flying passerine[J]. Biology Letters, 2012, 8(4): 554-557. |
49 | MUIJRES F T, BOWLIN M S, JOHANSSON L C, et al. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers[J]. Journal of the Royal Society, Interface, 2012, 9(67): 292-303. |
50 | VIDELER J J, STAMHUIS E J, POVEL G D E. Leading-edge vortex lifts swifts[J]. Science, 2004, 306(5703): 1960-1962. |
51 | WARRICK D R, TOBALSKE B W, POWERS D R. Aerodynamics of the hovering hummingbird[J]. Nature, 2005, 435: 1094-1097. |
52 | HEDENSTRÖM A, MUIJRES F T, VON BUSSE R, et al. High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel[J]. Experiments in Fluids, 2009, 46(5): 923-932. |
53 | MUIR R E, ARREDONDO-GALEANA A, VIOLA I M. The leading-edge vortex of swift wing-shaped delta wings[J]. Royal Society Open Science, 2017, 4(8): 170077. |
54 | HUBEL T Y, RISKIN D K, SWARTZ S M, et al. Wake structure and wing kinematics: The flight of the lesser dog-faced fruit bat, Cynopterus brachyotis[J]. Journal of Experimental Biology, 2010, 213(20): 3427-3440. |
55 | 宋笔锋, 稂鑫雨, 薛栋, 等. 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学: 技术科学, 2022, 52(6): 893-910. |
SONG B F, LANG X Y, XUE D, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia Sinica (Technologica), 2022, 52(6): 893-910 (in Chinese). | |
56 | LEE Y J, LUA K B, LIM T T, et al. A quasi-steady aerodynamic model for flapping flight with improved adaptability[J]. Bioinspiration & Biomimetics, 2016, 11(3): 036005. |
57 | ANSARI S A, ŻBIKOWSKI R, KNOWLES K. Aerodynamic modelling of insect-like flapping flight for micro air vehicles[J]. Progress in Aerospace Sciences, 2006, 42(2): 129-172. |
58 | BERMAN G J, WANG Z J. Energy-minimizing kinematics in hovering insect flight[J]. Journal of Fluid Mechanics, 2007, 582: 153. |
59 | ANDERSEN A, PESAVENTO U, WANG Z J. Unsteady aerodynamics of fluttering and tumbling plates[J]. Journal of Fluid Mechanics, 2005, 541: 65-90. |
60 | DICKSON W B, STRAW A D, DICKINSON M H. Integrative model of drosophila flight[J]. AIAA Journal, 2008, 46(9): 2150-2164. |
61 | KHAN Z A, AGRAWAL S K. Optimal hovering kinematics of flapping wings for micro air vehicles[J]. AIAA Journal, 2011, 49(2): 257-268. |
62 | RANKINE W J. On the mechanical principles of the action of propellers[J]. Transactions of the Institution of Naval Architects, 1865, 6: 13-39. |
63 | FROUDE R E. On the part played in propulsion by differences of fluid pressure[J]. Transactions of the Institution of Naval Architects, 1889, 30: 390-409. |
64 | ELLINGTON C. The aerodynamics of hovering insect flight. V. A vortex theory[J]. Philosophical Transactions of the Royal Society B, 1984, 305: 115-144. |
65 | WILLMOT A P, ELLINGTON C P. The mechanics of flight in the hawkmoth Manduca sexta II: Aerodynamic consequences of kinematic and morphological variation[J]. The Journal of Experimental Biology, 1997, 200(21): 2723–2745. |
66 | SUNADA S, ELLINGTON C P. A new method for explaining the generation of aerodynamic forces in flapping flight[J]. Mathematical Methods in the Applied Sciences, 2001, 24(17-18): 1377-1386. |
67 | MUIJRES F T, SPEDDING G R, WINTER Y, et al. Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements[J]. Experiments in Fluids, 2011, 51(2): 511-525. |
68 | SUN X H, ZHAO L F, JIAO Z X. Analyses and simulations of propulsion mechanisms for flapping wings with the extension of undulate propulsion theory[C]∥2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2016: 1794-1799. |
69 | MUIJRES F T, JOHANSSON L C, BARFIELD R, et al. Leading-edge vortex improves lift in slow-flying bats[J]. Science, 2008, 319(5867): 1250-1253. |
70 | MINOTTI F O. Determination of the instantaneous forces on flapping wings from a localized fluid velocity field[J]. Physics of Fluids, 2011, 23(11): 111902. |
71 | BOMPHREY R J. Advances in animal flight aerodynamics through flow measurement[J]. Evolutionary Biology, 2012, 39(1): 1-11. |
72 | WANG S Z, ZHANG X, HE G W, et al. On applicability of the Kutta-Joukowski theorem to low-Reynolds-number unsteady flows[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
73 | AHMADI A R, WIDNALL S E. Unsteady lifting-line theory with applications[C]∥AIAA Aerospace Sciences Meeting. Reston: AIAA, 1982: 11-14. |
74 | ARCHER R D, SAPUPPO J, BETTERIDGE D S. Propulsion characteristics of flapping wings[J]. The Aeronautical Journal, 1979, 83(825): 355-371. |
75 | BETTERIDGE D S, ARCHER R D. A study of the mechanics of flapping wings[J]. Aeronautical Quarterly, 1974, 25(2): 129-142. |
76 | PHLIPS P J, EAST R A, PRATT N H. An unsteady lifting line theory of flapping wings with application to the forward flight of birds[J]. Journal of Fluid Mechanics, 1981, 112(-1): 97. |
77 | SMITH M, WILKIN P, WILLIAMS M. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings[J]. Journal of Experimental Biology, 1996, 199(5):1073-1083. |
78 | NGUYEN A T, HAN J. Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle[J]. Aerospace Science and Technologys, 2018, 79: 468-481. |
79 | LONG L N, FRITZ T E. Object-oriented unsteady vortex lattice method for flapping flight[J]. Journal of Aircraft, 2004, 41(6): 1275-1290. |
80 | STANFORD B, BERAN P. Analytical sensitivity analysis of an unsteady vortex lattice method for flapping wing optimization[J]. Journal of Aircraft, 2010, 47(2): 647-662. |
81 | GHOMMEM M, COLLIER N, NIEMI A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1): 274-292. |
82 | GHOMMEM M, HAJJ M R, MOOK D T, et al. Global optimization of actively morphing flapping wings[J]. Journal of Fluids and Structures, 2012, 33: 210-228. |
83 | SVANBERG K. The method of moving asymptotes—A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
84 | SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573. |
85 | TAHA H E, HAJJ M R, NAYFEH A H. Flight dynamics and control of flapping-wing MAVs: A review[J]. Nonlinear Dynamics, 2012, 70(2): 907-939. |
86 | THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter[M]. 1935. |
87 | PETERS D A. Two-dimensional incompressible unsteady airfoil theory—An overview[J]. Journal of Fluids and Structures, 2008, 24(3): 295-312. |
88 | PETERS D A, JOHNSON M J. Finite-state airloads for deformable airfoils on fixed and rotating wings[C]∥ASME Winter Annual Meeting, Aeroelasticity and Fluid/Structures Interaction Problems. New York: ASME International, 1994: 44. |
89 | PETERS D A, KARUNAMOORTHY S, CAO W. Finite state induced flow models. I—Two-dimensional thin airfoil[J]. Journal of Aircraft, 1995, 32(2): 313-322. |
90 | JONES R T. Operational treatment of the nonuniform-lift theory in airplane dynamics: NACA 667[R]. Washington, D.C.: NACA, 1938. |
91 | JONES R T. The unsteady lift of a finite wing: NACA 682[R]. Washington, D.C.: NACA, 1939. |
92 | JONES R T. The unsteady lift of a wing of finite aspect ratio: NACA 681[R]. Washington, D.C.: NACA, 1940. |
93 | REISSNER E. Effect of finite span on the airload distributions for oscillating wings I: Aerodynamic theory of oscillating wings of finite span: NACA 1194[R]. Washington, D.C.: NACA, 1947. |
94 | REISSNER E, STEVENS J E. Effect of finite span on the airload distributions for oscillating wings. Ⅱ—Methods of calculation and examples of application: NACA 1195[R]. Washington, D.C.: NACA, 1947. |
95 | DICKINSON M H, GÖTZ K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers[J]. Journal of Experimental Biology, 1993, 174(1): 45-64. |
96 | DICKSON W B, DICKINSON M H. The effect of advance ratio on the aerodynamics of revolving wings[J]. Journal of Experimental Biology, 2004, 207(24): 4269-4281. |
97 | SANE S P, DICKINSON M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J]. Journal of Experimental Biology, 2002, 205(8): 1087-1096. |
98 | ANDERSEN A, PESAVENTO U, WANG Z J. Analysis of transitions between fluttering, tumbling and steady descent of falling cards[J]. Journal of Fluid Mechanics, 2005, 541: 91-104. |
99 | PESAVENTO U, WANG Z J. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation[J]. Physical Review Letters, 2004, 93(14): 144501. |
100 | HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal, 2007, 45(5): 1066-1079. |
101 | 付强, 张祥, 赵民, 等. 仿生扑翼飞行器风洞实验研究进展[J]. 工程科学学报, 2022, 44(4): 767-779. |
FU Q, ZHANG X, ZHAO M, et al. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle[J]. Chinese Journal of Engineering, 2022, 44(4): 767-779 (in Chinese). | |
102 | MAYBURY W J, LEHMANN F O. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings[J]. Journal of Experimental Biology, 2004, 207(26): 4707-4726. |
103 | WU P, IFJU P, STANFORD B, et al. A multidisciplinary experimental study of flapping wing aeroelasticity in thrust production[C]∥The Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
104 | WU P, IFJU P. Experimental methodology for flapping wing structure optimization in hovering flight of micro air vehicles[C]∥The Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
105 | CHAUDHURI A, HAFTKA R T, IFJU P, et al. Experimental flapping wing optimization and uncertainty quantification using limited samples[J]. Structural and Multidisciplinary Optimization, 2015, 51(4): 957-970. |
106 | KATZMAYR R. Effect of periodic changes of angle of attack on behavior of airfoils[M]. Washington, D.C.: National Advisory Committee for Aeronautics, 1922. |
107 | KNOLLER R. Die gesetze des luftwider standes[J]. Flug und Motortechnik (Wien), 1909, 3(21): 1-7. |
KNOLLER R. The laws of air resistance[J]. Flight and Engine Technology (Vienna), 1909, 3(21): 1-7 (in German). | |
108 | VON KARMAN T, BURGERS J M. Aerodynamic theory[M]. Berlin: Springer, 1934. |
109 | BRATT J B. Flow patterns in the wake of an oscillating airfoil: R&M-2773[R]. London: Aeronautical Research Council R&M, 1953. |
110 | 邵立民, 宋笔锋, 熊超, 等. 微型扑翼飞行器风洞试验初步研究[J]. 航空学报, 2007, 28(2): 275-280. |
SHAO L M, SONG B F, XIONG C, et al. Experimental investigation of flapping-wing MAV in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 275-280 (in Chinese). | |
111 | ANG H S, ZENG R, DUAN W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV[J]. Journal of Aerospace Power, 2007, 22(11): 1838-1845. |
112 | 王利光. 微型扑翼飞行器动力系统设计与优化[D]. 西安: 西北工业大学, 2008. |
WANG L G. Design and optimization for the propulsion system of the flapping wing micro air vehicle[D]. Xi’an: Northwestern Polytechnical University, 2008 (in Chinese). | |
113 | WANG L G, SONG B F, YANG W Q, et al. Experimental characterization of a flexible membrane flapping-wing in forward flight[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
114 | YANG W Q, SONG B F, SONG W P, et al. Aerodynamic research of flexible flapping wing by combining DIC and CFD approaches[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
115 | FU P, SONG B F, WANG L G. An experimental study on the influence of passive deformation to lift and thrust generation in flexible flapping wing[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
116 | 吴涛. 仿鸟扑翼多自由度运动的气动机理及气动优化设计[D]. 西安: 西北工业大学, 2022. |
Wu T. Aerodynamic mechanism and aerodynamic design optimization of bird-like flapping wing with multi-degree-of-freedom flapping motion[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
117 | VEST M S, KATZ J. Unsteady aerodynamic model of flapping wings[J]. AIAA Journal, 1996, 34(7): 1435-1440. |
118 | ZHU Q. Numerical simulation of a flapping foil with chordwise or spanwise flexibility[J]. AIAA Journal, 2007, 45(10): 2448-2457. |
119 | KIM D K, LEE J S, LEE J Y, et al. An aeroelastic analysis of a flexible flapping wing using modified strip theory[C]∥The Proceedings of Active and Passive Smart Structures and Integrated Systems. Bellingham: SPIE, 2008: 6928. |
120 | UNGER R, HAUPT M C, HORST P, et al. Structural design and aeroelastic analysis of an oscillating airfoil for flapping wing propulsion[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
121 | BROERING T M, LIAN Y, HENSHAW W. Numerical investigation of energy extraction in a tandem flapping wing configuration[J]. AIAA Journal, 2012, 50(11): 2295-2307. |
122 | WANG L, TIAN F B. Numerical study of flexible flapping wings with an immersed boundary method: Fluid-structure-acoustics interaction[J]. Journal of Fluids and Structures, 2019, 90: 396-409. |
123 | 曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析[J]. 南京航空航天大学学报, 2003, 35(1): 6-12. |
ZENG R, ANG H S. Aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 6-12 (in Chinese). | |
124 | 曾锐, 昂海松, 梅源, 等. 扑翼柔性及其对气动特性的影响[J]. 计算力学学报, 2005, 22(6): 750-754. |
ZENG R, ANG H S, MEI Y, et al. Flexibility of flapping wing and its effect on aerodynamic characteristic[J]. Chinese Journal of Computational Mechanics, 2005, 22(6): 750-754 (in Chinese). | |
125 | DENG S H, PERCIN M, VAN OUDHEUSDEN B W, et al. Numerical simulation of a flexible X-wing flapping-wing micro air vehicle[J]. AIAA Journal, 2017, 55(7): 2295-2306. |
126 | 龚凯. 有限翼展扑动翼的欧拉方程数值模拟[D]. 西安: 西北工业大学, 2003. |
GONG K. Numerical simulation of finite span flapping wing by euler equations[D]. Xi’an: Northwestern Polytechnical University, 2003 (in Chinese). | |
127 | 杨淑利, 宋文萍, 宋笔锋, 等. 微型扑翼飞行器机翼气动特性研究[J]. 西北工业大学学报, 2006, 24(6): 768-773. |
YANG S L, SONG W P, SONG B F, et al. Achieving reliability and validity of predicted aerodynamic performance of flapping wings for micro air vehicle (MAV)[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 768-773 (in Chinese). | |
128 | 何飞. 微型飞行器柔性翼气动及抗风特性研究[D]. 西安: 西北工业大学, 2007. |
HE F. Aerodynamics and anti-gust research of flexible-wing MAV[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese). | |
129 | 谢辉, 宋文萍, 宋笔锋. 微型扑翼绕流的N-S方程数值模拟[J]. 西北工业大学学报, 2008, 26(1): 104-109. |
XIE H, SONG W P, SONG B F. Numerical solution of Navier-Stokes equations for flow over a flapping wing[J]. Journal of Northwestern Polytechnical University, 2008, 26(1): 104-109 (in Chinese). | |
130 | 杨文青, 宋笔锋, 宋文萍. N-S方程数值研究翼型对微型扑翼气动特性的影响[J]. 计算力学学报, 2011, 28(2): 214-220. |
YANG W Q, SONG B F, SONG W P. The effect of airfoil to aerodynamics characteristics of flapping wing by numerical simulation on Navier-Stokes equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 214-220 (in Chinese). | |
131 | 杨文青, 宋笔锋, 宋文萍, 等. 微型扑翼低雷诺数绕流气动特性研究[J]. 空气动力学学报, 2011, 29(1): 32-38. |
YANG W Q, SONG B F, SONG W P, et al. Aerodynamic performance research of micro flapping-wing in low Reynolds number flow[J]. Acta Aerodynamica Sinica, 2011, 29(1): 32-38 (in Chinese). | |
132 | 杨文青, 宋笔锋, 宋文萍. 高效确定重叠网格对应关系的距离减缩法及其应用[J]. 航空学报, 2009, 30(2): 205-212. |
YANG W Q, SONG B F, SONG W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212 (in Chinese). | |
133 | 陈利丽. 微型扑翼气动结构耦合计算及优化设计研究[D]. 西安: 西北工业大学, 2013. |
CHEN L L. Aeroelastic analysis and optimization of flapping wing micro air vehicle by numerical simulation[D]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese). | |
134 | YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63-76. |
135 | GUO Y Y, YANG W Q, DONG Y B, et al. Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics[J]. Physics of Fluids, 2022, 34: 081903. |
136 | LIU D, CHENG J A, SONG B F, et al. Numerical investigation of non-planarity and relative motion for bionic slotted wings[J]. AIP Advances, 2023, 13(8): 085322. |
137 | WU P. Experimental characterization, design, analysis and optimization of flexible flapping wings for micro air vehicles[D]. Gainesville: University of Florida, 2010. |
138 | STEWART E C. Shape and structural optimization of flapping wings[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2013. |
139 | STANFORD B, IFJU P. Multi-objective topology optimization of wing skeletons for aeroelastic membrane structures[J]. International Journal of Micro Air Vehicles, 2009, 1(1): 51-69. |
140 | TORRES G, MUELLER T. Low aspect ratio aerodynamics at low Reynolds numbers[J]. AIAA Journal, 2004, 42(5): 865-873. |
141 | SINGH S, ZUBER M, HAMIDON M N, et al. Classification of actuation mechanism designs with structural block diagrams for flapping-wing drones: A comprehensive review[J]. Progress in Aerospace Sciences, 2022, 132: 100833. |
142 | YANG L J, HSU C K, HO J Y, et al. Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle[J]. Sensors and Actuators, A: Physical, 2007, 139(1-2): 95-103. |
143 | YANG L J, HSU C K, HAN H C, et al. Light flapping micro aerial vehicle using electrical-discharge wire-cutting technique[J]. Journal of Aircraft, 2009, 46(6): 1866-1874. |
144 | YANG L J, KAO C Y, HUANG C K. Development of flapping ornithopters by precision injection molding[J]. Applied Mechanics and Materials, 2012, 163: 125-132. |
145 | HSIAO F Y, YANG L J, LIN S H, et al. Autopilots for ultra lightweight robotic birds: Automatic altitude control and system integration of a sub-10 g weight flapping-wing micro air vehicle[J]. IEEE Control Systems Magazine, 2012, 32(5): 35-48. |
146 | YANG L J. The micro-air-vehicle golden snitch and its figure-of-8 flapping[J]. Journal of Applied Science and Engineering, 2012, 15(3): 197-212. |
147 | KARÁSEK M, MUIJRES F T, WAGTER C D, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094. |
148 | TAY W B, VAN OUDHEUSDEN B W, BIJL H. Numerical simulation of a flapping four-wing micro-aerial vehicle[J]. Journal of Fluids and Structures, 2015, 55: 237-261. |
149 | BEJGEROWSKI W, GERDES J W, GUPTA S K, et al. Design and fabrication of miniature compliant hinges for multi-material compliant mechanisms[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(5): 437-452. |
150 | JI B, ZHU Q L, GUO S J, et al. Design and experiment of a bionic flapping wing mechanism with flapping-twist-swing motion based on a single rotation[J]. AIP Advances, 2020, 10(6): 065018. |
151 | YOON S, KANG L H, JO S. Development of air vehicle with active flapping and twisting of wing[J]. Journal of Bionic Engineering, 2011, 8(1): 1-9. |
152 | GONG D H, LEE D W, SHIN S J, et al. String-based flapping mechanism and modularized trailing edge control system for insect-type FWMAV[J]. International Journal of Micro Air Vehicles, 2019, 11: 1756829319842547. |
153 | CHEN L, ZHANG Y L, WU J H. Study on lift enhancement of a flapping rotary wing by a bore-hole design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 095441001668892. |
154 | MADANGOPAL R, KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4): 809-816. |
155 | LANE P, THRONEBERRY G, FERNANDEZ I, et al. Towards bio-inspiration, development, and manufacturing of a flapping-wing micro air vehicle[J]. Drones, 2020, 4(3): 39. |
156 | MARIMUTHU N, ABDULLAH E J, MAJID D L, et al. Conceptual design of flapping wing using shape memory alloy actuator for micro unmanned aerial vehicle[J]. Applied Mechanics and Materials, 2014, 629-629: 152-157. |
157 | ZHAO J W, NIU J Y, MCCOUL D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment[J]. Meccanica, 2015, 50(11): 2815-2824. |
158 | KOFOD G, WIRGES W, PAAJANEN M, et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90(8): 081916. |
159 | 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 024024. |
ZHANG H Z, SONG B F, SUN Z C, et al. Driving mechanism of flapping wing aircraft: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 024024 (in Chinese). | |
160 | TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803-2829. |
161 | SUN M, XIONG Y. Dynamic flight stability of a hovering bumblebee[J]. Journal of Experimental Biology, 2005, 208(3): 447-459. |
162 | SUN M, WANG J K, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246. |
163 | OPPENHEIMER M W, DOMAN D B, SIGTHORSSON D O. Dynamics and control of a minimally actuated biomimetic vehicle: Part I—Aerodynamic model[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009. |
164 | DENG X Y, SCHENATO L, WU W C, et al. Flapping flight for biomimetic robotic insects: Part I—System modeling[J]. IEEE Transactions on Robotics, 2006, 22(4): 776-788. |
165 | KHAN Z A, AGRAWAL S K. Modeling and simulation of flapping wing micro air vehicles[C]∥Proceedings of 2005 ASME International Design Engineering Technical Conferences. New York: ASME International, 2005: 24-28. |
166 | GEBERT G, GALLMEIER P, EVERS J. Equations of motion for flapping flight[C]∥Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002. |
167 | LOH K, COOK M. Flight dynamic modelling and control system design for a flapping wing micro aerial vehicle at hover[C]∥Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2003. |
168 | BULER W, LOROCH L, SIBILSKI K, et al. Modeling and simulation of the nonlinear dynamic behavior of a flapping wings micro-aerial-vehicle[C]∥Proceedings of the 42nd AIAA aerospace sciences meeting and exhibit. Reston: AIAA, 2004. |
169 | DIETL J M, GARCIA E. Stability in ornithopter longitudinal flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1157-1163. |
170 | DIETL J, GARCIA E. Stability in hovering ornithopter flight[C]∥Proceedings of SPIE. Bellingham: SPIE, 2008. |
171 | BOLENDER M. Rigid multi-body equations-of-motion for flapping wing MAVs using Kane’s equations[C]∥ Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009. |
172 | GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1675-1679. |
173 | ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J]. AIAA Journal, 2011, 49(5): 969-981. |
174 | ORLOWSKI C T, GIRARD A, SHYY W. Four wing flapping micro air vehicles—Dragonflies or X-wings? [C]∥Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010. |
175 | ORLOWSKI C, GIRARD A, SHYY W. Open loop pitch control of a flapping wing micro-air vehicle using a tail and control mass[C]∥Proceedings of the 2010 American Control Conference. Piscataway: IEEE Press, 2010: 536-541. |
176 | JAHANBIN Z, GHAFARI A S, EBRAHIMI A, et al. Multi-body simulation of a flapping-wing robot using an efficient dynamical model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(1): 133-149. |
177 | ROCCIA BRUNO A, PREIDIKMAN S, BALACHAN⁃ DRAN B. Computational dynamics of flapping wings in hover flight: A co-simulation strategy[J]. AIAA Journal, 2017, 55(6): 1806-1822. |
178 | KHOSRAVI M, NOVINZADEH A B. A multi-body control approach for flapping wing micro aerial vehicles[J]. Aerospace Science and Technology, 2021, 112: 106525. |
179 | BARUH H. Analytical dynamics[M]. Boston: WCB/McGraw-Hill, 1999. |
180 | KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York: McGraw-Hill, 1985. |
181 | SLOTINE J J E, LI W. Applied nonlinear control[M]. New York: Prentice-Hall, 1991. |
182 | WANG T T, HE X Y, ZOU Y, FU Q, et al. Research progress on the flight control of flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2023, 45(10): 1630-1640. |
183 | RIFAÏ H L, MARCHAND N, POULIN-VITTRANT G. Bounded control of an underactuated biomimetic aerial vehicle—Validation with robustness tests[J]. Robotics and Autonomous Systems, 2012, 60(9): 1165-1178. |
184 | TAHMASIAN S, WOOLSEY C A, TAHA H E. Longitudinal flight control of flapping wing micro air vehicles[C]∥Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2014. |
185 | TORRES J Z, DAVILA J, LOZANO R. Attitude and altitude control on board of an ornithopter[C]∥2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 1124-1130. |
186 | LOH K, COOK M, THOMASSON P. An investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight[J]. The Aeronautical Journal, 2003, 107(1078): 743-753. |
187 | ROBERTS L, BRUCK H A, GUPTA S K. Autonomous loitering control for a flapping wing miniature aerial vehicle with independent wing control[C]∥Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York: ASME International, 2014: 17-20. |
188 | CHENG B, DENG X Y. A neural adaptive controller in flapping flight[J]. Journal of Robotics Mechatronics, 2012, 24: 602-611. |
189 | HE W, YAN Z C, SUN C Y, et al. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3452-3465. |
190 | QIAN C, FANG Y C. Adaptive tracking control of flapping wing micro‐air vehicles with averaging theory[J]. CAAI Transactions on Intelligence Technology, 2018, 3(1): 18-27. |
191 | WANG T H, JIN S T, HOU Z S. Model free adaptive pitch control of a flapping wing micro aerial vehicle with input saturation[C]∥2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway: IEEE Press, 2020: 627-632. |
192 | LIANG S R, SONG B F, XUAN J L. Active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing[J]. IEEE Access, 2020, 8: 171359-171372. |
193 | GUCKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M]. New York: Springer-Verlag, 1983. |
194 | SANDERS J A, VERHULST F. Averaging methods in nonlinear dynamical systems[M]. New York: Springer-Verlag, 1985. |
195 | VEIA P A, BURDICK J W. A general averaging theory via series expansions[C]∥Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 1530-1535. |
196 | VEIA P A. Averaging and control of nonlinear systems (with application to biomimetic locomotion)[M]. Pasadena: California Institute of Technology, 2003. |
197 | HOU Z S, JIN S T. Model free adaptive control: Theory and applications[M]. Boca Raton: CRC Press, 2013. |
198 | 韩京清. 从PID技术到“自抗扰控制” 技术[J]. 控制工程, 2002, 9(3): 13-18. |
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9(3): 13-18 (in Chinese). | |
199 | PORNSIN-SIRIRAK T, TAI Y, NASSEF H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors & Actuators: A Physical, 2001, 89(1): 95-103. |
200 | WOOD R J. Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV[C]∥2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2007: 1576-1581. |
201 | XIE L X, WU P, IFJU P. Advanced flapping wing structure fabrication for biologically-inspired hovering flight[C]∥The Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2010. |
[1] | Hongmiao ZHOU, Jianqiao YU, Yong YU. Dynamic modeling and bifurcation analysis of agile turn of parafoil⁃missile system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229012-229012. |
[2] | Hailang SONG, Jiandong ZHANG, Guoqing SHI, Qiming YANG, Yaozhong ZHANG. Comprehensive evaluation techniques and methods for flight test of avionics fire control system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529687-529687. |
[3] | Xueqin CHEN, Boyu YANG, Fan WU, Chengfei YUE, Xibin CAO. State and bias estimation of spacecraft attitude control system based on l1-TSXKF [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 329678-329678. |
[4] | Ziyi WU, Shaoming HE, Yadong WANG, Hongyan LI. Nonlinear observability-enhancement optimal guidance law for moving targets [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729750-729750. |
[5] | Lu ZHUANG, Zhong LU, Haijing SONG, Li DONG, Yuting WU, Jia ZHOU. Safety analysis for fly⁃by⁃wire system based on fault injection model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327329-327329. |
[6] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[7] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
[8] | FU Yang'aoxiao, DING Mingsong, LIU Qingzong, JIANG Tao, SHI Run, DONG Weizhong, GAO Tiesuo. Numerical study of hot jet interaction effect in divert control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125941-125941. |
[9] | WANG Rui, ZHOU Zhou, GUO Ronghua, HUANG Yuechen. Multi-body dynamics simulation and experiment of solar-powered UAV parachute landing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 225721-225721. |
[10] | DU Xiaoqiong, LI Bin, LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526199-526199. |
[11] | LIU Chang, JIANG Yongping, MA Chunyan, ZHANG Tao. Formal verification technology for AADL models based on NuSMV [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 325196-325196. |
[12] | RAN Maopeng, WANG Chengcai, LIU Huahua, WANG Wei, LYU Jinhu. Research status and future development of morphing aircraft control technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527449-527449. |
[13] | HAN Bing, LU Zhong, ZHANG Ziwen, YI Yang, LI Chao. Operational cost optimization method for time-limited dispatch of engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 324794-324794. |
[14] | LIU Haigang, LIU Liang, WANG Peng, ZHOU Wei. Model based simulation and analysis of energy optimization characteristics of more-electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525801-525801. |
[15] | FAN Zhouwei, YU Xiongqing, WANG Chao, ZHONG Bowen. Sensitivity analysis of key design parameters of commercial aircraft using deep neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524353-524353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341