[1] 中国民用航空局. 中国民用航空规章:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. Chinese civil aviation regulations:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[2] 总装备部. 军用飞机强度和刚度规范, 第十部分:飞行试验:GJB67.10A-2008[S]. 北京:总装备部军标出版发行部, 2008:1-10. General Equipment Department. Military airplane structural strength specification Part 10:Flight tests:GJB67.10A-2008[S]. Beijing:General Equipment Department Military Standard Press, 2008:1-10(in Chinese).
[3] 阎楚良, 高镇同. 飞机高置信度中值随机疲劳载荷谱的编制原理[J]. 航空学报, 2000, 21(2):118-123. YAN C L, GAO Z T. Compilation theory of median stochastic fatigue load spectrum with high confidence level for airplane[J]. Acta Aeronautica et Astronautics Sinica, 2000, 21(2):118-123(in Chinese).
[4] LESKI A, REYMER P, KURDELSKI M. Development of load spectrum for full scale fatigue test of a trainer aircraft[C]//Proceedings of the 26th Symposium of International Commitlee on aeronautical Fatigue. Netherland:Springer, 2011.
[5] PIOTR R, ANDRZEJ L. Flight loads acquisition for Pzl-130 OrLik TCII full scale fatigue test[J]. Fatigue of Aircraft Structures, 2011(1):78-85.
[6] LIZOTTE A M, LOKOS W A. Deflection-based aircraft structural loads estimation with comparation to flight[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2005.
[7] BAKALYAR J. Validation tests of fiber optic strain-based operational shape and load measurements[C]//20th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2012.
[8] 郭正旺, 李昭广, 王仲燕, 等. 用内式六分量应变天平实测导弹挂飞载荷[J]. 航空学报, 2010, 31(7):1403-1409. GUO Z W, LI Z G, WANG Z Y, et al. Measuring missile's suspension flight loads using built-in six-compoment strain-gage balance[J]. Acta Aeronautica et Astronautics Sinica, 2010, 31(7):1403-1409(in Chinese).
[9] SKPOINSKI T H, AIKEN W S, HUSTON W B. Calibration of strain-gage installations in aircraft structures for measurement of flight loads:NACA-TR-1178[R]. Washington, D.C.:NASA, 1954.
[10] KWAK D Y, YOSHIDA K. Flight test measurements of surface pressure on unmanned scaled supersonic experimental airplane[C]//24th Applied Aerodynamics Conference. Reston:AIAA, 2006.
[11] JENKINS J M, DEANGELIS V M. A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format:NASA-TM-4804[R]. Washington, D.C.:NASA, 1997.
[12] WILLIAM A, STAUF L R. Strain-gage loads calibration parametric study:NASA/TM-2004-212853[R]. Washington, D.C.:NASA, 2004.
[13] CAO X, SUGIYAMAC Y, MITSUIi Y. Application of artificial neural networks to load identification[J]. Computer & Structures, 1998, 69:63-78.
[14] HALLE M, THIELECKE F. Flight loads estimation using local model networks[C]//29th Congress of the International Council of the Aeronautical Sciences. BONN:ICAS, 2014
[15] NELSON S A. Strain gage selection in loads equations using a genetic alogrithm:NASA Contractor Report 4597[R]. Washington, D.C.:NASA, 1994.
[16] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese).
[17] PADMANABHAN M A, NAGESH K Y, Elattuvalappil H. A statistcs based method for mapping flight strains to loads[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006.
[18] JASON D B, JOAO C M. Hybrid load calibrations of a strain gage instrumented horizontal empennage[C]//VI National Congress of Mechanical Engineering. Compina:CONEM, 2010.
[19] JEBACKE I, HORAK M. Possibilities and methods of in-flight loading measurement[J]. Aviation, 2012, 16(2):47-50.
[20] GONZALEZ M, GOGU C, BINAUD N, et al. Uncertainty quantification in aircraft load calibration[C]//10th World Congress on Structural and Multidisciplinary Optimization. East Lansing:WCSMO, 2013. |