[1] Han J C, Dutta S, Ekkad S V. Gas turbine heat transfer and cooling technology[M]. New York: Taylor & Francis, 2000.[2] Bunker R S. Gas turbine heat transfer: ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2): 193-201.[3] Bunker R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453.[4] Chambers A G, Gillespie R H. Enhancement of impingement cooling in a high cross flow channel using sharp impingement cooling holes, ASME Paper, GT2006-90612[R]. New York: ASME, 2006.[5] Wang F M, Zhang J Z, Wang S F. Study of flow characteristics inside rectangular channel with different pin fins[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 37-41. (in Chinese)王奉明, 张靖周, 王锁芳. 不同形状扰流柱矩形通道内流动特性研究[J]. 航空学报, 2007, 28(1): 37-41.[6] Funazaki K, BinSalleh H. Extensive studies on internal and external heat transfer characteristics of integrated impingement cooling structure for HP turbines, ASME Paper, GT2008-50202[R]. New York: ASME, 2008.[7] Liu C L, Zhu H R, Bai J T, et al. Experimental research on film cooling characteristics of converging-expanding hole rows on turbine blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 687-693. (in Chinese)刘存良, 朱惠人, 白江涛, 等. 涡轮叶片上收缩-扩张形孔排的全气膜冷却特性[J]. 航空学报, 2010, 31(4): 687-693.[8] Yao Y, Zhang J Z, He F, et al. Numerical investigation on film cooling effectiveness of converging slot hole at turbine blade suction surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1115-1120. (in Chinese)姚玉, 张靖周, 何飞, 等. 涡轮叶片吸力面上收敛缝形孔气膜冷却效率的数值研究[J]. 航空学报, 2010, 31(6): 1115-1120.[9] Deng H W, Gu Z P, Zhu J Q, et al. Experiments of impingement heat transfer with film extraction flow on the leading edge of rotating blades[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22): 5425-5435.[10] Yao Y, Zhang J Z, Tan X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52: 61-72.[11] Nakamata C, Mimura F, Mastushita M, et al. Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration, ASME Paper, GT2007-27020[R]. New York: ASME, 2007.[12] Ieronymidis I, Gillespie R H, Ireland P T, et al. Detailed heat transfer measurements in a model of an integrally cast cooling passage[J]. Journal of Turbomachinery, 2010, 132(2): 021002.[13] Li X, Mao J K, Wang X P, et al. Experiments on heat transfer enhancement with vortex in a double-decker jet/film cooling structure[J]. Journal of Propulsion Technology, 2010, 31(3): 325-330. (in Chinese)李鑫, 毛军逵, 王小平, 等. 双层壳型涡轮叶片中冲击旋流换热增益效果试验[J]. 推进技术, 2010, 31(3): 325-330.[14] Dees J E, Bogard D G, Ledezma G A, et al. Experimental measurements and computational predictions for an integrally cooled simulated turbine vane[J]. Journal of Turbomachinery, 2012, 134(6): 061003.[15] Guo W, Ji H H, Cai Y, et al. Optimum design approach for internal cooling structure in turbine blades[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38(4): 408-412. (in Chinese)郭文, 吉洪湖, 蔡毅, 等. 高压涡轮动叶内部冷却结构的改进设计[J]. 南京航空航天大学学报, 2006, 38(4): 408-412.[16] Bohn D, Heuer T. Conjugate flow and heat transfer calculation of a high pressure turbine nozzle guide vane, AIAA-2001-3304[R]. Reston: AIAA, 2001.[17] York W D, Leylek J H. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane, ASME Paper, GT2003-38551[KG-*2][R]. New York: ASME, 2003.[18] Zhang L F, Liu Z X, Lian X C. Numerical study of 3D heat transfer for turbine blade with air cooling[J]. Journal of Aerospace Power, 2007, 22(8): 1268-1272. (in Chinese)张丽芬, 刘振侠, 廉筱纯. 气冷涡轮叶片三维换热问题计算[J]. 航空动力学报, 2007, 22(8): 1268-1272.[19] Su S, Liu J J, An B T. Numerical simulation of conjugate heat transfer for an internally cooled 3-D turbine blade[J]. Journal of Aerospace Power, 2007, 22(12): 2018-2024. (in Chinese)苏生, 刘建军, 安柏涛. 内冷涡轮叶栅三维气热耦合数值模拟[J]. 航空动力学报, 2007, 22(12): 2018-2024.[20] Mangani L, Cerutti M, Maritano M, et al. Conjugate heat transfer analysis of NASA C3X film cooled vane with an object-oriented CFD code, ASME Paper, GT2010-23458[R]. New York: ASME, 2010.[21] Sleiti A K, Kapat J S. Effect of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel[J]. International Journal of Thermal Sciences, 2008, 47(5): 609-619.[22] Harrison K, Bogard D. Comparison of RANS turbulence models for prediction of film cooling performance, ASME Paper, GT2008-50366[R]. New York: ASME, 2008.[23] Silieti M, Kassab A J, Divo E. Film cooling effectiveness: comparison of adiabatic and conjugate heat transfer CFD models[J]. International Journal of Thermal Science, 2009, 48(12): 2237-2248.[24] Wang L P, Zhang J Z, Yao Y. Numerical investigation on temperature distribution of an air-cooled and thermal barrier coating blade[J]. Journal of Aerospace Power, 2012, 27(2): 357-364. (in Chinese)王利平, 张靖周, 姚玉. 敷设热障涂层气冷叶片温度分布数值研究[J]. 航空动力学报, 2012, 27(2): 357-364.王利平, 张靖周, 姚玉. 敷设热障涂层气冷叶片温度分布数值研究[J]. 航空动力学报, 2012, 27(2): 357-364.[25] Singh D, Premachandran B, Kohli S. Experimental and numerical investigation of jet impingement cooling of a circular cylinder[J]. International Journal of Heat and Mass Transfer, 2013, 60: 672-688.[26] Turner E R, Wilson M D, Hylton L D, et al. Analytical and experimental evaluation of surface heat transfer distributions with leading edge showerhead film cooling, NASA-CR-174827[R]. Washington, D.C.: NASA, 1985. |