[1] Messinger B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[2] Miller D R, Lynch C J, Tate P A. Overview of high speed close-up imaging in an icing environment, AIAA-2004-0407. Reston: AIAA, 2004.
[3] Olsen W, Walker E. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces, NASA-TM-87184. Washington, D.C.: NASA, 1986.
[4] Meng F X, Chen W J, Liang Q S, et al. Experiment on cylinder in injection driven icing wind tunnel[J]. Journal of Aerospace Power, 2013, 28(7): 1467-1474.(in Chinese) 孟繁鑫, 陈维建, 梁青森, 等. 引射式结冰风洞内圆柱结冰试验[J]. 航空动力学报, 2013, 28(7): 1467-1474.
[5] Thiele U, Neuffer K, Bestehorn M, et al. Sliding drops on an inclined plane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1): 87-104.
[6] Rio E, Daerr A, Andreotti B, et al. Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane[J]. Physical Review Letters, 2005, 94(2): 024503.
[7] Servantie J, Müller M. Statics and dynamics of a cylindrical droplet under an external body force[J]. The Journal of Chemical Physics, 2008, 128(1): 014709.
[8] Fortin G. Simulation de l'accrétion de glace sur un obstacle bidimensionnel par la méthode des bissectrices et par la modélisation des ruisselets et des gouttes de surface. Quebec: Universite du Quebeca Chicoutimi, 2003.(in French)
[9] ElSherbini A, Jacobi A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces[J]. Journal of Colloid and Interface Science, 2006, 299(2): 841-849.
[10] Extrand C W, Kumagai Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force[J]. Journal of Colloid and Interface Science, 1995, 170(2): 515-521.
[11] Extrand C, Gent A. Retention of liquid drops by solid surfaces[J]. Journal of Colloid and Interface Science, 1990, 138(2): 431-442.
[12] Brown R, Orr F, Jr, Scriven L. Static drop on an inclined plate: analysis by the finite element method[J]. Journal of Colloid and Interface Science, 1980, 73(1): 76-87.
[13] Dussan V E, Chow R T P. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids[J]. Journal of Fluid Mechanics, 1983, 137(1): 1-29.
[14] Wolfram E, Faust R, Padday J. Wetting, spreading and adhesion[M]. New York: Academic Press, 1978: 213.
[15] Kim H Y, Lee H J, Kang B H. Sliding of liquid drops down an inclined solid surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 372-380.
[16] Elizabeth B, Dussan V, Davis S. On the motion of a fluid-fluid interface along a solid surface[J]. Journal of Fluid Mechanics, 1974, 65(1): 71-95.
[17] Hao L, Cheng P. An analytical model for micro-droplet steady movement on the hydrophobic wall of a micro-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(5): 1243-1246.
[18] Richard D, Quéré D. Viscous drops rolling on a tilted non-wettable solid[J]. Europhysics Letters, 1999, 48(3): 286-291.
[19] Ding H, Gilani M N, Spelt P D. Sliding, pinch-off and detachment of a droplet on a wall in shear flow[J]. Journal of Fluid Mechanics, 2010, 644: 217-244.
[20] Fortin G, Ilinca A, Laforte J L, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling, AIAA-2003-1076. Reston: AIAA, 2003.
[21] Fox H, Zisman W. The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene[J]. Journal of Colloid Science, 1950, 5(6): 514-531.
[22] Kays W M, Crawford M E, Weigand B. Convective heat and mass transfer[M]. New York: McGraw-Hill, 2004: 367. |