Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (S2): 729458-729458.doi: 10.7527/S1000-6893.2023.29458
• Icing and Anti/De-icing • Previous Articles Next Articles
Liguo WANG1(), Liang ZHOU2, Song ZHANG1, Yong WU1, Peng LI1, Jiaxing CHEN1
Received:
2023-08-17
Revised:
2023-08-25
Accepted:
2023-09-07
Online:
2023-09-25
Published:
2023-09-21
Contact:
Liguo WANG
E-mail:3216054916@qq.com
CLC Number:
Liguo WANG, Liang ZHOU, Song ZHANG, Yong WU, Peng LI, Jiaxing CHEN. Research progress on anti-icing and de-icing technologies for helicopter rotors[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729458-729458.
Table 1
Three anti-icing and de-icing technologies for helicopter rotors
技术名称 | 原理 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
气动除冰 | 当旋翼表面有积冰时,气囊迅速充气膨胀,使积冰在外力的作用下破裂 | 能耗低、质量轻、结构相对简单和维修更方便 | 影响直升机气动性能;除冰效果一般;气囊膨胀需要克服气动压力;气动滑环结构复杂;气囊容易被腐蚀 | 小型直升机 |
液体防冰 | 防冰液与撞击在桨叶表面上的过冷水滴混合,降低其凝固点 | 能耗低,维修方便,不产生冰瘤 | 质量重;防冰效果一般;喷液孔易堵塞 | 防除冰面积较小的桨叶 |
电热防除冰 | 将电能转化成热能,使桨叶表面温度维持或升高至冰点以上 | 防除冰效果好 | 系统较复杂;质量重;会产生溢流冰 | 大部分在役直升机 |
Table 2
Research progress in anti-icing and de-icing technologies for partially superhydrophobic electric hybrid aircraft
年份 | 研究单位 | 方法 | 实验条件 | 节能比/% |
---|---|---|---|---|
2011 | 加拿大魁北克大学[ | 疏水与电热 | LWC=0.3 g/m3, MVD=20 μm, T=-5~-20 ℃, V=21 m/s | 33 |
2011 | 加拿大阿尔伯塔大学[ | 超疏水与电热 | LWC=1.5 g/m3, MVD=50 μm, T=-17 ℃, V=28 m/s | 80 |
2015 | 空客公司与慕尼黑工业大学[ | 超疏水与电热和电机械 | LWC=0.45 g/m3, MVD=20 μm T=-8 ℃, V=120 m/s | 9 |
2017 | 加拿大肯高迪亚大学[ | 超疏水与电热 | LWC=4.8 g/m3, MVD=60 μm, T=-15 ℃, V=23 m/s | 50 |
2018 | 中国西北工业大学[ | 超疏水与电热 | LWC=0.377 g/m3, MVD=70 μm, T=-5 ℃, V=15 m/s | 90 |
1 | 陈希. 旋翼结冰的高精度数值模拟与防/除冰方法研究[D]. 南京: 南京航空航天大学, 2019. |
CHEN X. Investigations on high accuracy numerical simulation and anti/de-icing methods for rotor icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
2 | 李岩, 王绍龙, 易贤, 等. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520703. |
LI Y, WANG S L, YI X, et al. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520703 (in Chinese). | |
3 | 徐玉貌, 吕少杰, 曹义华, 等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报, 2016, 31(2): 399-404. |
XU Y M, LYU S J, CAO Y H, et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power, 2016, 31(2): 399-404 (in Chinese). | |
4 | 刘福华, 金可, 余雄勇. 某型直升机旋翼防除冰测试技术方法研究与应用[J].测控技术, 2015, 34: 35-37. |
LIU F H, JIN K, YU X Y. Research and application of the helicopter rotor anti-icing/deicing test technology [J]. Measurement & Control Technology, 2015, 34: 35-37 (in Chinese). | |
5 | 李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报, 2023, 38(2): 257-268. |
LI W B, HAO Y Q, WANG J T, et al. Review on influences of helicopter rotor icing and anti-/ de-icing methods[J]. Journal of Aerospace Power, 2023, 38(2): 257-268 (in Chinese). | |
6 | 陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1314-1323. |
CHEN N L, DU J M, JI H H, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323 (in Chinese). | |
7 | LAMRAOUI F, FORTIN G, BENOIT R, et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology, 2014, 100: 36-49. |
8 | MUHAMMED M, VIRK M S. Ice accretion on rotary-wing unmanned aerial vehicles—a review study[J]. Aerospace, 2023, 10(3): 261. |
9 | LI L K, NING Z, HU H. An experimental study on the transient ice accretion process over a rotating UAV propeller[C]∥Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. |
10 | 倪章松, 刘森云, 张军, 等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报, 2021, 36(1): 8-14. |
NI Z S, LIU S Y, ZHANG J, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power, 2021, 36(1): 8-14 (in Chinese). | |
11 | MUHAMMED M, VIRK M S. Ice accretion on fixed-wing unmanned aerial vehicle—a review study[J]. Drones, 2022, 6(4): 86. |
12 | 何治, 常士楠, 袁修干. 悬停状态下直升机旋翼水滴撞击特性研究[J]. 北京航空航天大学学报, 2003, 29(11): 1055-1058. |
HE Z, CHANG S N, YUAN X G. Research on droplet impingement property of rotor blade in hover[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1055-1058 (in Chinese). | |
13 | 张威, 林永峰, 陈平剑. 基于欧拉方法的旋翼翼型结冰数值模拟及参数影响[J]. 南京航空航天大学学报, 2011, 43(3): 375-380. |
ZHANG W, LIN Y F, CHEN P J. Numerical simulation of ice accretion and parameter effects based on eulerian droplet model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 375-380 (in Chinese). | |
14 | 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745. |
CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120745 (in Chinese). | |
15 | CAMPBELL S E, BROEREN A P, BRAGG M B. Sensitivity of aircraft performance to icing parameter variations[J]. Journal of Aircraft, 2007, 44(5): 1758-1760. |
16 | LI L K, LIU Y, ZHANG Z C, et al. Effects of thermal conductivity of airframe substrate on the dynamic ice accretion process pertinent to UAS inflight icing phenomena[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1184-1195. |
17 | DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft, 2017, 54(1): 220-228. |
18 | LI W B, LI K C, SONG C, et al. Effect of droplet MVD on icing collection efficiency for a helicopter blade [C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021. |
19 | KREEGER R E, TSAO J. Ice shapes on a tail rotor[R]. 2014 |
20 | 王正之. 直升机旋翼结冰数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017. |
WANG Z Z. Numerical simulation and experimental study on helicopter rotor icing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
21 | 王正之, 杜孟华, 朱春玲, 等. 直升机旋翼结冰后三维桨叶气动特性数值分析[J]. 空军工程大学学报(自然科学版), 2021, 22(1): 33-38. |
WANG Z Z, DU M H, ZHU C L, et al. A numerical analysis on aerodynamic characteristics of three-dimensional iced rotor[J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(1): 33-38 (in Chinese). | |
22 | 黄明其, 王亮权, 袁红刚, 等. 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报, 2022, 48(6): 929-936. |
HUANG M Q, WANG L Q, YUAN H G, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936 (in Chinese). | |
23 | VILLENEUVE E, SAMAD A, VOLAT C, et al. Experimental investigation of icing effects on a hovering drone rotor performance[J]. Drones, 2022, 6(11): 345. |
24 | YAN S, OPAZO T, PALACIOS J, et al. Experimental evaluation of multi-rotor UAV operation under icing conditions [C]∥Proceedings of the Annual Forum Proceedings-AHS International. 2018. |
25 | CAO Y, CHEN K. Helicopter icing[J]. The Aeronautical Journal, 2010, 114(1152): 83-90. |
26 | ZHU Y, PALACIOS J, ROSE J, et al. Numerical simulation and experimental validation of tailored wave guides for ultrasonic de-icing on aluminum plates[R]. 2010 |
27 | 何舟东, 朱永峰, 周景锋. 飞机电脉冲除冰技术探讨[J]. 实验流体力学, 2016, 30(2): 38-45. |
HE Z D, ZHU Y F, ZHOU J F. Study on electro-impulse de-icing technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 38-45 (in Chinese). | |
28 | 王毅, 元辛, 张峰. 飞机机翼防除冰系统研究进展[J]. 河南科学, 2012, 30(9): 1246-1250. |
WANG Y, YUAN X, ZHANG F. The development of the wing ice protection system[J]. Henan Science, 2012, 30(9): 1246-1250 (in Chinese). | |
29 | PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. |
30 | RYKACZEWSKI K, ANAND S, SUBRAMANYAM S B, et al. Mechanism of frost formation on lubricant-impregnated surfaces[J]. Langmuir, 2013, 29(17): 5230-5238. |
31 | KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces: are they really ice-repellent[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(1): 25-29. |
32 | LAZAUSKAS A, GUOBIENĖ A, PROSYČEVAS I, et al. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles[J]. Materials Characterization, 2013, 82: 9-16. |
33 | 周煜杰. 飞机防除冰方法的总结与探究[J]. 现代商贸工业, 2019, 40(1): 195-196. |
ZHOU Y J. Summary and exploration of anti-deicing methods for aircraft[J]. Modern Business Trade Industry, 2019, 40(1): 195-196 (in Chinese). | |
34 | BLAHA B J, EVANICH P L. Pneumatic boot for helicopter rotor deicing [C]∥Proceedings of Air Transportation and Safety. 1981: 425-445. |
35 | REINMANN J J, SHAW R J, RANAUDO R J. NASA’s Program on Icing Research and Technology [C]∥Proceedings of the Symposium on Flight in Adverse Environmental Conditions. 1989. |
36 | GRAHAM M, HAWORTH L, KIMBERLY J. JUH-1H pneumatic boot deicing system flight test evaluation [R]. 1987. |
37 | 张佳培. 基于石墨烯电热膜的直升机旋翼防除冰系统设计[M]. 武汉:华中科技大学, 2021. |
ZHANG J P. Design of helicopter rotor electrothermal anti-icing and de-icing system of graphene flexible heating thin-film [M]. Wuhan: Huazhong University of Science & Technology, 2021 (in Chinese). | |
38 | DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft, 2017, 54(1): 220-228. |
39 | PALACIOS J, WOLFE D, BAILEY M, et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12. |
40 | 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界, 2012, 28(1): 26-31. |
LI B. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World, 2012, 28(1): 26-31 (in Chinese). | |
41 | COFFMAN H J. Helicopter rotor icing protection methods[J]. Journal of the American Helicopter Society, 1987, 32(2): 34-39. |
42 | 锁俊睿, 刘壮, 高长水. 防除冰桨叶加热及温度控制系统设计[J]. 机械制造与自动化, 2015, 44(4): 177-180. |
SUO J R, LIU Z, GAO C S. Design of heating and temperature control system for anti/de-icer paddles[J]. Machine Building & Automation, 2015, 44(4): 177-180 (in Chinese). | |
43 | 吴海涛, 彭华乔, 张帆, 等. 非牛顿型飞机除冰/防冰液黏度影响因素分析[J]. 精细与专用化学品, 2017, 25(1): 18-21. |
WU H T, PENG H Q, ZHANG F, et al. Analysis on effective factors of non-newtonian de-icing/anti-icing fluids viscosity[J]. Fine and Specialty Chemicals, 2017, 25(1): 18-21 (in Chinese). | |
44 | COFFMAN J H. Review of helicopter icing protection systems[R]. 1983 |
45 | 杨常卫, 张功虎, 孙涛, 等. 黑鹰直升机旋翼桨叶防/除冰系统研究[J]. 直升机技术, 2011(1): 37-44. |
YANG C W, ZHANG G H, SUN T, et al. Development of black hawk helicopter rotor blade anti-/ de-icing system[J]. Helicopter Technique, 2011(1): 37-44 (in Chinese). | |
46 | RASHID T, LIANG H L, TAIMUR M, et al. Roll to roll coating of carbon nanotube films for electro thermal heating[J]. Cold Regions Science and Technology, 2021, 182: 103210. |
47 | 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10(2): 201-205, 211. |
CHEN G C, JI S Y, ZHAO W M, et al. Experimental study on heating pad of helicopter rotor deicing system[J]. Advances in Aeronautical Science and Engineering, 2019, 10(2): 201-205, 211 (in Chinese). | |
48 | CHEN L, ZHANG Y D, WU Q. Effect of graphene coating on the heat transfer performance of a composite anti-/ deicing component[J]. Coatings, 2017, 7(10): 158. |
49 | 邹小玲. 直升机旋翼防除冰设计与分析[J]. 直升机技术, 2009(3): 39-46. |
ZOU X L. The design and analysis of helicopter rotor anti-icing/deicing system[J]. Helicopter Technique, 2009(3): 39-46 (in Chinese). | |
50 | ZHAO Z H, CHEN H W, LIU X L, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology, 2018, 349: 340-346. |
51 | ZHAO Z H, CHEN H W, LIU X L, et al. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J]. Cold Regions Science and Technology, 2021, 184: 103234. |
52 | AL-KHALIL K, FERGUSON T, PHILLIPS D, et al. A hybrid anti-icing ice protection system[C]∥Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. 1997. |
53 | 郑春涛. 复合式除冰技术研究[D]. 武汉: 华中科技大学, 2016. |
ZHENG C T. Researches on hybrid de-ice methods[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). | |
54 | 郭艳亮. 复合式除冰控制技术及试验研究[D]. 武汉: 华中科技大学, 2017. |
GUO Y L. The control technique and experimental research for aircraft hybrid deicing[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese). | |
55 | SENCZYSZYN S, BARNARD A R. Thermal and vibration induced rotor blade deicing using carbon nanotube thermophones[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2540. |
56 | 刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
57 | 苗新宇. 热力机械复合式除冰系统能耗分析[J]. 航空科学技术, 2015, 26(6): 31-34. |
MIAO X Y. Energy consumption analysis of thermo-mechanical expulsion de-icing system[J]. Aeronautical Science & Technology, 2015, 26(6): 31-34 (in Chinese). | |
58 | PARK M H, HA J H, LA M, et al. Conducting super-hydrophobic thin film for electric heating applications[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3): 1506-1510. |
59 | FORTIN G, ADOMOU M, PERRON J. Experimental study of hybrid anti-icing systems combining thermoelectric and hydrophobic coatings[C]∥SAE Technical Paper Series. 2011: 281-283. |
60 | ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1-2): 58-67. |
61 | STROBL T, STORM S, THOMPSON D, et al. Feasibility study of a hybrid ice protection system[J]. Journal of Aircraft, 2015, 52(6): 2064-2076. |
62 | STROBL T, THOMPSON D S, HORNUNG M. Feasibility study of a hybrid ice protection system based on passive removal of residual ice[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. 2015. |
63 | DE PAUW D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft, 2017, 54(2): 490-499. |
64 | 朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[M]. 西安:西北工业大学, 2018. |
ZHU B. Low power superhydrophobic electrothermal skin and its anti-icing performance [M]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
65 | CHEN L, ZHANG Y D, WU Q, et al. A novel anti/de-icing system combining heat expansion film and electric heating for helicopter rotor[C]∥2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE Press, 2017: 1072-1076. |
66 | WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
67 | LIU X L, CHEN H W, ZHAO Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology, 2019, 374: 889-896. |
68 | 景向嵘, 程盼, 罗振兵, 等 . 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(S2): 727765. |
JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727765 (in Chinese). |
[1] | Fengying ZHENG, Zhimin SHEN, Yaqin LI, Kaizhao XU, Xinhua WANG. Gain adaptive multi-mode switching control for coaxial high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529088-529088. |
[2] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[3] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[4] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[5] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[6] | Yilan ZENG, Dong HAN, Zhuangzhuang LIU, Xin ZHOU. Driving rotation characteristics of a compound helicopter’s rotor undergoing upwash in high⁃speed flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529061-529061. |
[7] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[8] | Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069-529069. |
[9] | Jinghui DENG. Key technologies and development for high-speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085-529085. |
[10] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[11] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[12] | Bo LI, Xiao WANG. Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528945-528945. |
[13] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[14] | Xiaole WANG, Ping SUN, Xin GU, Chunyu ZHAO, Zhenyu HUANG. Low⁃frequency and multi⁃bandgap noise reduction characteristics of acoustic metamaterial⁃based helicopter sidewall [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 428901-428901. |
[15] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341