[1] MESSINGER B L. Equilibrium temperature of an un-heated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[2] AI-KHALIL K M, KEITH T G, DE-WITT K J. Development of an improved model for runback water on aircraft surfaces[J]. Journal of Aircraft, 1994, 31(2):271-278.
[3] MYERS T G. Extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2):211-218.
[4] MYERS T G, THOMPSON C P. Modeling the flow of water on aircraft in icing conditions[J]. Journal of Aircraft, 1998, 36(6):1010-1013.
[5] ALZAILI J, HAMMOND D. Experimental investigation of thin water film stability and its characteristics in SLD icing problem[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing. Chicago:SAE International, 2011.
[6] DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):3702-3707.
[7] WRIGHT W B, STRUK P, BARTKUS T,et al. Recent advances in the LEWICE icing model[C]//SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. Prague:SAE International, 2015.
[8] HARIRECHE O, VERDIN P, THOMPSON C P, et al. Explicit finite volume modeling of aircraft anti-icing and de-icing[J]. Journal of Aircraft, 2008, 45(6):1924-1936.
[9] FORTIN G, LAFORTE J, ILINCA A. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model[J]. International Journal of Thermal Sciences, 2006, 45(6):595-606.
[10] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):481-498.
[11] UENO K, FARZANEH M. Linear stability analysis of ice growth under supercooled water film driven by a laminar airflow[J]. Physics of Fluids, 2011, 23(4):042103.
[12] WANG G K, ROTHMAYER A P. Thin water films driven by air shear stress through roughness[J]. Computers & Fluids, 2009, 38(2):235-246.
[13] WHITE E B, SCHMUCKER J A. A runback criterion for water drops in a turbulent accelerated boundary layer[J]. Journal of Fluids Engineering, 2008, 130(6):061302.
[14] 孟繁鑫, 朱光亚, 李荣嘉, 等. 加热表面水珠运动特性研究[J]. 航空学报, 2014, 35(5):1292-1301. MENG F X,ZHU G Y, LI R J, et al. Study of water drop motion characteristics on heating surface[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1292-1301(in Chinese).
[15] MOGHTADERNEJAD S, JADIDI M, NABIL E, et al. Shear driven rivulet dynamics on surfaces with various wettabilities[C]//ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal:American Society of Mechanical Engineers, 2014.
[16] FEO A, TSAO J. The water film weber number in glaze icing scaling[C]//2007 SAE Aircraft and Engine Icing International Conference. Seville:SAE International, 2007.
[17] MUZIK T, SAFARIK P, TUCEK A. Analysis of the water film behavior and its breakup on profile using experimental and numerical methods[J]. Journal of Thermal Science, 2014, 23(4):325-331.
[18] ZHANG K, WEI T, HU H. An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique[J]. Experiments in Fluids, 2015, 56(9):173.
[19] CHEREMISINOFF N P, DAVIS E J. Stratified turbulent-turbulent gas-liquid flow[J]. AIChE Journal, 1979, 25(1):48-56.
[20] ANDRITSOS N, HANRATTY T J. Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3):444-454.
[21] PARAS S V, VLACHOS N A, KARABELAS A J. Liquid layer characteristics in stratified-Atomization flow[J]. International Journal of Multiphase Flow, 1994, 20(5):939-956.
[22] TZOTZI C, ANDRITSOS N. Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 54(3):43-54.
[23] SETYAWAN A, INDARTO, DEENDARLIANTO. The effect of the fluid properties on the wave velocity and wave frequency of gas-liquid annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2016, 71(4):25-41.
[24] ISHII M, GROLMES M A. Inception criteria for droplet entrainment in two-phase concurrent film flow[J]. AIChE Journal, 1975, 21(2):308-318.
[25] 吴望一. 流体力学(下册)[M]. 北京:北京大学出版社, 2004:370-386. WU W Y. Fluiddynamic (Part 2)[M]. Beijing:Peking University Press, 2004:370-386(in Chinese).
[26] KOSKY P G, STAUB F W. Local condensing heat transfer coefficients in the annular flow regime[J]. AIChE Journal, 1971, 17(5):1037-1043.
[27] HUGHMARK G A. Film thickness, entrainment, and pressure drop in upward annular and dispersed flow[J]. AIChE Journal, 1973, 19(5):1062-1065.
[28] ASALI J C, HANRATTY T T, ANDREUSSI P. Interfacial drag and film height for vertical annular flow[J]. AIChE Journal, 1985, 31(6):895-902. |