ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527331-527331.doi: 10.7527/S1000-6893.2022.27331
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
LIU Xiaolin1,2, ZHU Yantong1,2, WANG Zelinlan1,2, ZHAO Zehui1,2, ZHANG Deyuan1,2, CHEN Huawei1,2
Received:
2022-04-27
Revised:
2022-05-02
Published:
2022-10-12
Supported by:
CLC Number:
LIU Xiaolin, ZHU Yantong, WANG Zelinlan, ZHAO Zehui, ZHANG Deyuan, CHEN Huawei. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527331-527331.
[1] 胡义明. 积冰对飞机的危害及防除冰方法[J]. 科技风, 2021(5):17-18. HU Y M. Harm of ice accumulation to aircraft and anti-deicing methods[J]. Technology Wind, 2021(5):17-18 (in Chinese). [2] 李航航, 周敏. 飞机结冰探测技术及防除冰系统工程应用[J]. 航空工程进展, 2010, 1(2):112-115. LI H H, ZHOU M. Engineering application of icing detection technique and anti-icing and deicing system on aircraft[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2):112-115 (in Chinese). [3] 余放. 飞机防除冰系统技术多元化发展战略与路径[J]. 民用飞机设计与研究, 2020(1):38-43. YU F. Diversification development strategy and path of anti-icing system technology for aircraft[J]. Civil Aircraft Design & Research, 2020(1):38-43 (in Chinese). [4] 何舟东, 朱永峰, 周景锋. 飞机电脉冲除冰技术探讨[J]. 实验流体力学, 2016, 30(2):38-45. HE Z D, ZHU Y F, ZHOU J F. Study on electro-impulse de-icing technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):38-45 (in Chinese). [5] 李广超, 何江, 林贵平. 电脉冲除冰(EIDI)技术研究[J]. 航空动力学报, 2011, 26(8):1728-1735. LI G C, HE J, LIN G P. Electro-impulse de-icing (EIDI) technology study[J]. Journal of Aerospace Power, 2011, 26(8):1728-1735 (in Chinese). [6] 洪海华, 刘伟光, 艾剑波, 等. 直升机的防除冰系统[J]. 直升机技术, 2010(1):52-56. HONG H H, LIU W G, AI J B, et al. Anti-deicing system of helicopter[J]. Helicopter Technique, 2010(1):52-56 (in Chinese). [7] 霍西恒, 刘鹏, 贾丽杰. 民用客机机翼热气防冰系统问题初探[J]. 民用飞机设计与研究, 2010(4):16-18, 27. HUO X H, LIU P, JIA L J. Research of the wing hot air anti-icing system for the civil aircraft[J]. Civil Aircraft Design and Research, 2010(4):16-18, 27 (in Chinese). [8] ROY R, RAJ L P, JO J H, et al. Multiphysics anti-icing simulation of a CFRP composite wing structure embedded with thin etched-foil electrothermal heating films in glaze ice conditions[J]. Composite Structures, 2021, 276:114441. [9] DALILI N, EDRISY A, CARRIVEAU R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):428-438. [10] 常士楠, 杨波, 冷梦尧, 等. 飞机热气防冰系统研究[J]. 航空动力学报, 2017, 32(5):1025-1034. CHANG S N, YANG B, LENG M Y, et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power, 2017, 32(5):1025-1034 (in Chinese). [11] 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术, 2016, 27(7):8-11. HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/de-icing[J]. Aeronautical Science & Technology, 2016, 27(7):8-11 (in Chinese). [12] 刘代军, 陈亚莉. 用于波音787的新型复合材料机翼除冰系统[J]. 航空制造技术, 2009, 52(17):82-83. LIU D J, CHEN Y L. Application of new type of composite wing deicing system in Boeing 787[J]. Aeronautical Manufacturing Technology, 2009, 52(17):82-83 (in Chinese). [13] 魏杰, 李昊, 张亚男, 等. 石墨烯复合材料在电热防/除冰领域研究进展[J]. 中国材料进展, 2022, 41(6):487-496 WEI J, LI H, ZHANG Y N, et al. Research progress of graphene composites in the field of electrothermal anti-icing/deicing[J]. Materials China, 2022, 41(6):487-496 (in Chinese). [14] 李小飞, 洪时泉, 周进, 等. 飞机防冰表面材料研究进展[J]. 航空科学技术, 2019, 30(7):1-7. LI X F, HONG S Q, ZHOU J, et al. Review of anti-icing surface materials[J]. Aeronautical Science & Technology, 2019, 30(7):1-7 (in Chinese). [15] DHYANI A, WANG J, HALVEY A K, et al. Design and applications of surfaces that control the accretion of matter[J]. Science, 2021, 373(6552):eaba5010. [16] CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597):85-89. [17] LIU X L, CHEN H W, KOU W P, et al. Robust anti-icing coatings via enhanced superhydrophobicity on fiberglass cloth[J]. Cold Regions Science and Technology, 2017, 138:18-23. [18] LIU X L, CHEN H W, ZHAO Z H, et al. Self-jumping mechanism of melting frost on superhydrophobic surfaces[J]. Scientific Reports, 2017, 7:14722. [19] LIU X L, CHEN H W, ZHAO Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology, 2019, 374:889-896. [20] ZHAO Z H, CHEN H W, LIU X L, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology, 2018, 349:340-346. [21] WANG Z, ZHU Y T, LIU X L, et al. Temperature self-regulating electrothermal pseudo-slippery surface for anti-icing[J]. Chemical Engineering Journal, 2021, 422:130110. [22] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8. [23] GAO H T, JIAN Y M, YAN Y Y. The effects of bio-inspired micro/nano scale structures on anti-icing properties[J]. Soft Matter, 2021, 17(3):447-466. [24] SHEN Y Z, WU X H, TAO J, et al. Icephobic materials:Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103:509-557. [25] JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie (International Editon), 2004, 43(33):4338-4341. [26] WANG L, GONG Q H, ZHAN S H, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35):7729-7735. [27] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810):55-59. [28] PAN R, ZHANG H J, ZHONG M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1):1743-1753. [29] BENGALURU SUBRAMANYAM S, KONDRASHOV V, RVHE J, et al. Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions[J]. ACS Applied Materials & Interfaces, 2016, 8(20):12583-12587. [30] LIU J, GUO H Y, ZHANG B, et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface[J]. Angewandte Chemie (International Editon), 2016, 55(13):4265-4269. [31] GONG X, GAO X, JIANG L. Recent progress in bionic condensate microdrop self-propelling surfaces[J]. Advanced Materials, 2017, 29(45):1703002. [32] KONG W L, WANG L P, BIAN P X, et al. Effect of surface wettability on impact-freezing of supercooled large water droplet[J]. Experimental Thermal and Fluid Science, 2022, 130:110508. [33] BIRD J C, DHIMAN R, KWON H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476):385-388. [34] LIU Y H, MOEVIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519. [35] WU X H, ZHAO X, HO J W C, et al. Design and durability study of environmental-friendly room-temperature processable icephobic coatings[J]. Chemical Engineering Journal, 2019, 355:901-909. [36] ZHAO G L, ZOU G S, WANG W G, et al. Competing effects between condensation and self-removal of water droplets determine antifrosting performance of superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(6):7805-7814. [37] LIAO R J, LI C, YUAN Y, et al. Anti-icing performance of ZnO/SiO2/PTFE sandwich-nanostructure superhydrophobic film on glass prepared via RF magnetron sputtering[J]. Materials Letters, 2017, 206:109-112. [38] CHU F Q, WU X M, WANG L L. Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(9):8420-8425. [39] WANG S L, ZHANG W W, YU X Q, et al. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost[J]. Scientific Reports, 2017, 7:40300. [40] LIU X L, CHEN H W, ZHAO Z H, et al. Tunable self-jumping of melting frost on macro-patterned anisotropic superhydrophobic surfaces[J]. Surface and Coatings Technology, 2021, 409:126858. [41] TAN X H, ZHANG Y Z, LIU X Y, et al. Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing[J]. Surface and Coatings Technology, 2021, 405:126568. [42] KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces:Smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1:15003. [43] GAO L Y, LIU Y, MA L Q, et al. A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation[J]. Renewable Energy, 2019, 140:943-956. [44] WANG N, XIONG D S, DENG Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6260-6272. [45] GUO J, YANG F C, GUO Z G. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay[J]. Journal of Colloid and Interface Science, 2016, 466:36-43. [46] WANG P, LI Z Q, XIE Q, et al. A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength[J]. Journal of Bionic Engineering, 2021, 18(1):55-64. [47] WANG L Z, TIAN Z, JIANG G C, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13:378. [48] LU Y, SATHASIVAM S, SONG J L, et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226):1132-1135. [49] WANG N, LU Y, XIONG D S, et al. Designing durable and flexible superhydrophobic coatings and its application in oil purification[J]. Journal of Materials Chemistry A, 2016, 4(11):4107-4116. [50] RAMAKRISHNA S, SANTHOSH KUMAR K S, MATHEW D, et al. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties[J]. Scientific Reports, 2016, 5:18510. [51] ZENG D, LI Y, HUAN D J, et al. Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628:127377. [52] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4):355-360. [53] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447. [54] KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8):6569-6577. [55] YIN X Y, ZHANG Y, WANG D A, et al. Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance[J]. Advanced Functional Materials, 2015, 25(27):4237-4245. [56] YUAN Y, XIANG H Y, LIU G Y, et al. Self-repairing performance of slippery liquid infused porous surfaces for durable anti-icing[J]. Advanced Materials Interfaces, 2022, 9(10):2101968. [57] LIU Q, YANG Y, HUANG M, et al. Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating[J]. Applied Surface Science, 2015, 346:68-76. [58] KIM J H, KIM M J, LEE B, et al. Durable ice-lubricating surfaces based on polydimethylsiloxane embedded silicone oil infused silica aerogel[J]. Applied Surface Science, 2020, 512:145728. [59] HAN X, TANG X, CHEN R F, et al. Citrus-peel-like durable slippery surfaces[J]. Chemical Engineering Journal, 2021, 420:129599. [60] CAI G Y, LIU F L, WU T Z. Slippery liquid-infused porous surfaces with inclined microstructures to enhance durable anti-biofouling performances[J]. Colloids and Surfaces B:Biointerfaces, 2021, 202:111667. [61] DAS A, SHOME A, MANNA U. Porous and reactive polymeric interfaces:An emerging avenue for achieving durable and functional bio-inspired wettability[J]. Journal of Materials Chemistry A, 2021, 9(2):824-856. [62] HAJEESAEH S, MUENSIT N, VAN DOMMELEN P, et al. Durable slippery lubricant-infused multiscale-textured surfaces for repelling highly adhesive liquids[J]. Materials Research Express, 2020, 7(10):106409. [63] WU D Q, MA L W, ZHANG F, et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property[J]. Materials & Design, 2020, 185:108236. [64] WANG F, DING W W, HE J Y, et al. Phase transition enabled durable anti-icing surfaces and its DIY design[J]. Chemical Engineering Journal, 2019, 360:243-249. [65] YUAN S C, PENG J W, ZHANG X G, et al. A mechanically robust slippery surface with ‘corn-like’ structures fabricated by in situ growth of TiO2 on attapulgite[J]. Chemical Engineering Journal, 2021, 415:128953. [66] LIU M J, RU Y F, FANG R C, et al. Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance[J]. Angewandte Chemie (International Editon), 2020, 59(29):11876-11880. [67] SUN X D, DAMLE V G, LIU S, et al. Bioinspired stimuli-responsive and antifreeze-secreting anti-icing coatings[J]. Advanced Materials Interfaces, 2015, 2(5):1400479. [68] CHEN J, LUO Z Q, FAN Q R, et al. Anti-ice coating inspired by ice skating[J]. Small, 2014, 10(22):4693-4699. [69] DOU R M, CHEN J, ZHANG Y F, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003. [70] GWAK Y, PARK J I, KIM M, et al. Creating anti-icing surfaces via the direct immobilization of antifreeze proteins on aluminum[J]. Scientific Reports, 2015, 5:12019. [71] WU S W, YAN Y C, WU D, et al. Bio-inspired anti-icing surface materials[M]//Ice Adhesion:Mechanism, Measurement, and Mitigation. Hoboken:Wiley-Scrivener, 2020:467-493. [72] CHERNYY S, JÄRN M, SHIMIZU K, et al. Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties:effect of counter ions[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6487-6496. [73] LIANG B, ZHANG G Y, ZHONG Z X, et al. Superhydrophilic anti-icing coatings based on polyzwitterion brushes[J]. Langmuir, 2019, 35(5):1294-1301. [74] HE Z Y, WU C Y, HUA M T, et al. Bioinspired multifunctional anti-icing hydrogel[J]. Matter, 2020, 2(3):723-734. [75] SARMA J, ZHANG L, GUO Z Q, et al. Sustainable icephobicity on durable quasi-liquid surface[J]. Chemical Engineering Journal, 2022, 431:133475. [76] ZHAO X, KHATIR B, MIRSHAHIDI K, et al. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes[J]. ACS Nano, 2021, 15:13559-13567. [77] WANG L M, MCCARTHY T J. Covalently attached liquids:Instant omniphobic surfaces with unprecedented repellency[J]. Angewandte Chemie (International Editon), 2016, 55(1):244-248. [78] WOOH S, BUTT H J. A photocatalytically active lubricant-impregnated surface[J]. Angewandte Chemie (International Editon), 2017, 56(18):4965-4969. [79] MEN X H, SHI X C, GE B, et al. Novel transparent, liquid-repellent smooth surfaces with mechanical durability[J]. Chemical Engineering Journal, 2016, 296:458-465. [80] YANG J, LI J Y, JIA X H, et al. Fabrication of robust and transparent slippery coating with hot water repellency, antifouling property, and corrosion resistance[J]. ACS Applied Materials & Interfaces, 2020, 12(25):28645-28654. [81] GOLOVIN K, DHYANI A, THOULESS M D, et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science, 2019, 364(6438):371-375. [82] BEEMER D L, WANG W, KOTA A K. Durable gels with ultra-low adhesion to ice[J]. Journal of Materials Chemistry A, 2016, 4(47):18253-18258. [83] SOJOUDI H, WANG M, BOSCHER N D, et al. Durable and scalable icephobic surfaces:Similarities and distinctions from superhydrophobic surfaces[J]. Soft Matter, 2016, 12(7):1938-1963. [84] ZHUO Y Z, CHEN J H, XIAO S B, et al. Gels as emerging anti-icing materials:A mini review[J]. Materials Horizons, 2021, 8(12):3266-3280. [85] HE Z W, XIAO S B, GAO H J, et al. Multiscale crack initiator promoted super-low ice adhesion surfaces[J]. Soft Matter, 2017, 13(37):6562-6568. [86] DENG Y, CHEN Z J, ZHU Y B, et al. The device using a polydimethylsiloxane membrane and the phase transition of water[J]. Coatings, 2021, 11(9):1102. [87] LEE S, BROEREN A, ADDY H, et al. Development of 3D ice accretion measurement method[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012:447-463. [88] 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2):520711. YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520711 (in Chinese). [89] MATSUBAYASHI T, TENJIMBAYASHI M, MANABE K, et al. Integrated anti-icing property of super-repellency and electrothermogenesis exhibited by PEDOT:PSS/cyanoacrylate composite nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(36):24212-24220. [90] LORDAN D, BURKE M, MANNING M, et al. Asymmetric pentagonal metal meshes for flexible transparent electrodes and heaters[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4932-4940. [91] CHENG S M, GUO P, WANG X, et al. Photothermal slippery surface showing rapid self-repairing and exceptional anti-icing/deicing property[J]. Chemical Engineering Journal, 2022, 431:133411. [92] WU S W, LIANG Z Y, LI Y P, et al. Transparent, photothermal, and icephobic surfaces via layer-by-layer assembly[J]. Advanced Science, 2022, 9(14):e2105986. [93] ZHENG W W, TENG L, LAI Y K, et al. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J]. Chemical Engineering Journal, 2022, 427:130922. [94] LI Y, MA W, KWON Y S, et al. Solar deicing nanocoatings adaptive to overhead power lines[J]. Advanced Functional Materials, 2022, 32(25):2113297. [95] LIU Y B, XU R N, LUO N, et al. All-day anti-icing/de-icing coating by solar-thermal and electric-thermal effects[J]. Advanced Materials Technologies, 2021, 6(11):2100371. [96] ZHANG H Q, ZHAO G L, WU S W, et al. Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(18):e2100978118. [97] ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1-2):58-67. [98] SUN H Y, LIN G P, JIN H C, et al. Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel[J]. Renewable Energy, 2021, 179:1179-1190. [99] ALAMRI S, VERCILLO V, AGUILAR-MORALES A I, et al. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning[J]. Advanced Materials Interfaces, 2020, 7(22):2001231. [100] WANG P, YAO T, LI Z Q, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198:108307. [101] ZHAO Z H, CHEN H W, LIU X L, et al. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J]. Cold Regions Science and Technology, 2021, 184:103234. |
[1] | . Hybrid optimization design for shape and topology of variable camber wing [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | . Frequency-weighted dynamic mode decomposition for trailing edge flapping airfoil flow [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | Ting YU, Luyi LI, Yushan LIU, Zeming CHANG. Efficient Bayesian updating method under observation uncertainty and its application in wing structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 228592-228592. |
[4] | Handuo HU, Yanping SONG, Jianyang YU, Yao LIU, Fu CHEN, Wenxiu GAO. Application of orthogonal matching pursuit to airfoil uncertainty quantification [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128327-128327. |
[5] | Gaojie MA, Gang AN, Youmin SHI, Ning KANG, Junshuai SUN. Advanced technology and development of high lift system for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727516-727516. |
[6] | Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446-127446. |
[7] | DENG Yiju, DUAN Zhuoyi, AI Mengqi. Status and development of laminar flow wing design technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526778-526778. |
[8] | YANG Zhao, LI Jie, NIU Xiaotian. Analysis and correction of Reynolds number effect of a flight verification platform with laminar wing section [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527287-527287. |
[9] | NIU Xiaotian, LI Jie, ZHOU Zhipeng, YANG Zhao, CHANG Mochen. Sensitivity analysis of transonic laminar flow characteristics of an aircraft with laminar wing section [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526771-526771. |
[10] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Aerodynamic performance optimization design of middle wing section of a special laminar unmanned flight in high-speed cruise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526766-526766. |
[11] | JIANG Lihong, RAO Hanyue, LAN Xiayu, YANG Tihao, GENG Jianzhong, BAI Junqiang. Aerodynamic design and comprehensive benefit impact of hybrid laminar flow wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526791-526791. |
[12] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Stall separation optimization and analysis of middle wing section on specially configured laminar flight [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526765-526765. |
[13] | CHEN Yifu, WANG Yiwen, DENG Yiju, WANG Bo, BAI Junqiang, LU Lei. Experiment and numerical simulation of natural laminar flow wing glove [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526793-526793. |
[14] | YANG Tihao, BAI Junqiang, DUAN Zhuoyi, SHI Yayun, DENG Yiju, ZHOU Zhu. Aerodynamic design of laminar flow wings for jet aircraft: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527016-527016. |
[15] | WANG Yiwen, LAN Xiayu, SHI Yayun, HUA Jun, BAI Junqiang, ZHOU Zhu. Gradient optimization design for laminar airfoil considering inspiration effect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527323-527323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341