Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (23): 631955.doi: 10.7527/S1000-6893.2025.31955
• special column • Previous Articles
Tianqi FAN1, Zhengxia ZOU2(
), Zhenwei SHI2
Received:2025-03-10
Revised:2025-03-16
Accepted:2025-05-15
Online:2025-06-09
Published:2025-05-30
Contact:
Zhengxia ZOU
E-mail:zhengxiazou@buaa.edu.cn
Supported by:CLC Number:
Tianqi FAN, Zhengxia ZOU, Zhenwei SHI. Typical remote sensing target detection with data synthesis based on reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(23): 631955.
Table 1
All rendering parameters required for synthetic environment
| 参数类型 | 变量名 | 描述 | 默认值 | 是否使用强化学习 | 参数约束 |
|---|---|---|---|---|---|
| 目标模型变换矩阵参数 | 模型绕x轴旋转角度/(°) | 90 | |||
| 模型绕z轴旋转最小角度/(°) | 0 | ||||
| 模型绕z轴旋转最大角度/(°) | 360 | ||||
| 模型x方向最小偏移量 | -0.3 | 是 | < | ||
| 模型x方向最大偏移量 | 0.3 | 是 | > | ||
| 模型y方向最小偏移量 | -0.3 | 是 | < | ||
| 模型y方向最大偏移量 | 0.3 | 是 | > | ||
| 模型z方向偏移量 | 0.002 | ||||
| 模型缩放因子 | 0.04 | ||||
| 虚拟相机参数 | 相机焦距 | 221.8 | |||
| 相机主点 | (256,256) | ||||
| 相机绕z轴旋转最小角度/(°) | 0 | ||||
| 相机绕z轴旋转最大角度/(°) | 360 | ||||
| 相机x方向偏移量 | 0 | ||||
| 相机y方向偏移量 | 0 | ||||
| 相机z方向最小偏移量 | 0.3 | 是 | < | ||
| 相机z方向最大偏移量 | 0.5 | 是 | > | ||
| 模拟光照参数 | 光照强度 | 20 | 是 | ||
| 光照最小角度/(°) | 0 | 是 | < | ||
| 光照最大角度/(°) | 50 | 是 | > |
Table 3
Structure of each dataset in mixed remote sensing image dataset experiment
| 目标类型 | 数据集名称 | 训练及验证集 | 测试集 |
|---|---|---|---|
| 车辆 | 真实遥感图像数据集 | 真实遥感图像 | 真实遥感图像 |
| 合成遥感图像数据集 | 使用默认参数的合成遥感图像 | ||
| 默认混合遥感图像数据集 | 真实+使用默认参数的合成遥感图像 | ||
| DQN混合遥感图像数据集 | 真实+使用深度Q网络学习参数的合成遥感图像 | ||
| 飞机 | 真实遥感图像数据集 | 真实遥感图像 | 真实遥感图像 |
| 合成遥感图像数据集 | 使用默认参数的合成遥感图像 | ||
| 默认混合遥感图像数据集 | 真实+使用默认参数的合成遥感图像 | ||
| DQN混合遥感图像数据集 | 真实+使用深度Q网络学习参数的合成遥感图像 |
Table 4
Detection results of different datasets in mixed remote sensing image dataset experiment
| 目标类型 | 数据集 | 查准率 | 查全率 | AP50 | AP50-95 |
|---|---|---|---|---|---|
| 车辆 | 真实遥感图像数据集 | 0.837 | 0.796 | 0.849 | 0.482 |
| 合成遥感图像数据集 | 0.193 | 0.306 | 0.212 | 0.095 | |
| 默认混合遥感图像数据集 | 0.842 | 0.797 | 0.859 | 0.494 | |
| DQN混合遥感图像数据集 | 0.849 | 0.802 | 0.866 | 0.509 | |
| 飞机 | 真实遥感图像数据集 | 0.930 | 0.906 | 0.954 | 0.644 |
| 合成遥感图像数据集 | 0.420 | 0.254 | 0.221 | 0.088 | |
| 默认混合遥感图像数据集 | 0.949 | 0.913 | 0.962 | 0.668 | |
| DQN混合遥感图像数据集 | 0.943 | 0.920 | 0.964 | 0.678 |
Table 13
Results of proposed method and comparative methods
目标 类型 | 方法 | 查准率 | 查全率 | AP50 | AP50-95 |
|---|---|---|---|---|---|
| 车辆 | RT-DETR | 0.794 | 0.714 | 0.773 | 0.407 |
| YOLOv8 | 0.797 | 0.810 | 0.853 | 0.473 | |
| YOLOv11 | 0.837 | 0.796 | 0.849 | 0.482 | |
| 所提方法 | 0.860 | 0.812 | 0.877 | 0.513 | |
| 飞机 | RT-DETR | 0.872 | 0.834 | 0.877 | 0.579 |
| YOLOv8 | 0.928 | 0.916 | 0.949 | 0.646 | |
| YOLOv11 | 0.930 | 0.906 | 0.954 | 0.644 | |
| 所提方法 | 0.947 | 0.935 | 0.971 | 0.688 |
| [1] | VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018(1): 7068349. |
| [2] | ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276. |
| [3] | 杨旭. 遥感图像目标检测技术研究[D]. 郑州: 战略支援部队信息工程大学, 2023: 1. |
| YANG X. Research on object detection technology in remote sensing images[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2023: 1 (in Chinese). | |
| [4] | 欧冬秀. 交通信息技术[M]. 上海: 同济大学出版社, 2007: 9-26. |
| OU D X. Transportation information technologies[M]. Shanghai: Tongji University Press, 2007: 9-26 (in Chinese). | |
| [5] | 常嘉伟. 基于深度学习的飞机目标检测与跟踪系统的设计与实现[D]. 北京: 北京邮电大学, 2022: 1-2. |
| CHANG J W. Design and implementation of aircraft target detection and tracking system based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2022: 1-2 (in Chinese). | |
| [6] | 方浩文, 施华君. 基于深度学习的卫星图像识别分类方法[J]. 计算机系统应用, 2019, 28(10): 27-34. |
| FANG H W, SHI H J. Satellite image recognition and classification method based on deep learning[J]. Computer Systems & Applications, 2019, 28(10): 27-34 (in Chinese). | |
| [7] | 薛振锋. 合成数据集的生成与优化方法及其在岩渣分析中的应用[D]. 杭州: 浙江大学, 2021: 1-2. |
| XUE Z F. Generation and optimization of synthetic dataset and its application in rock analysis[D]. Hangzhou: Zhejiang University, 2021: 1-2 (in Chinese). | |
| [8] | 韩俊. 基于深度学习的遥感图像车辆检测[D]. 徐州: 中国矿业大学, 2023: 5-7. |
| HAN J. Deep learning-based vehicle detection for remote sensing images[D]. Xuzhou: China University of Mining and Technology, 2023: 5-7 (in Chinese). | |
| [9] | YANG X, SUN H, SUN X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839-50849. |
| [10] | CHENG G, SI Y J, HONG H L, et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 431-435. |
| [11] | XIE L C, XUE Y L, YE J Z. UAV aerial photography target detection algorithm based on improved YOLOv5[C]∥2022 International Conference on Machine Vision, Automatic Identification and Detection. 2022: 012024. |
| [12] | CHEN T X, YE Z, TAN Z T, et al. MiM-ISTD: Mamba-in-mamba for efficient infrared small-target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5007613. |
| [13] | LIU B, CHEN S B, WANG J X, et al. An oriented object detector for hazy remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1001711. |
| [14] | CUBUK E D, ZOPH B, MANÉ D, et al. AutoAugment: Learning augmentation strategies from data[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 113-123. |
| [15] | ZOPH B, CUBUK E D, GHIASI G, et al. Learning data augmentation strategies for object detection[C]∥Computer Vision-ECCV 2020. Cham: Springer, 2020: 566-583. |
| [16] | KIM J M, JANG J Y, SEO S, et al. MUM: Mix image tiles and UnMix feature tiles for semi-supervised object detection[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 14492-14501. |
| [17] | ROS G, SELLART L, MATERZYNSKA J, et al. The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 3234-3243. |
| [18] | TREMBLAY J, PRAKASH A, ACUNA D, et al. Training deep networks with synthetic data: Bridging the reality gap by domain randomization[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2018: 10820-10828. |
| [19] | PRAKASH A, BOOCHOON S, BROPHY M, et al. Structured domain randomization: Bridging the reality gap by context-aware synthetic data[C]∥2019 International Conference on Robotics and Automation. Piscataway: IEEE Press, 2019: 7249-7255. |
| [20] | KIM J H, HWANG Y. GAN-based synthetic data augmentation for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5002512. |
| [21] | MNHI V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[DB/OL]. arXiv: arXiv:1312. 5602, 2013. |
| [22] | WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8: 279-292. |
| [23] | ZOU Z X, LI W Y, SHI T Y, et al. Generative adversarial training for weakly supervised cloud matting[C]∥2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 201-210. |
| [24] | LI W Y, ZOU Z X, SHI Z W. Deep matting for cloud detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8490-8502. |
| [25] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944. |
| [26] | XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983. |
| [27] | CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: Survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488. |
| [28] | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2844-2853. |
| [29] | ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]∥2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 16965-16974. |
| [30] | QIU S H, WEN G J, FAN Y X. Occluded object detection in high-resolution remote sensing images using partial configuration object model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1909-1925. |
| [1] | Tao ZHANG, Pan LI, Zixu WANG, Zhenhua ZHU. Design of reward functions for helicopter attitude control in reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732184-732184. |
| [2] | Jianyu XU, Li ZHOU, Zhanxue WANG, Jie SHI, Hao SHI. Calculation method for hypersonic plume infrared radiation based on a fast line-by-line calculation model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 630778-630778. |
| [3] | Kaifang WAN, Zhilin WU, Yunhui WU, Haozhi QIANG, Yibo WU, Bo LI. Cooperative location of multiple UAVs with deep reinforcement learning in GPS-denied environment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331024-331024. |
| [4] | Lingfeng JIANG, Xinkai LI, Hai ZHANG, Hanwei LI, Hongli ZHANG. Mapless navigation of UAVs in dynamic environments based on an improved TD3 algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331035-331035. |
| [5] | Lingjie MENG, Hongguang LI, Xinjun LI. SAR image simulation method guided by geomorphic category information [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 331003-331003. |
| [6] | Zhihao ZHAO, Zhaohua YANG, Yun WU, Yuanjin YU. Single-photon counting imaging denoising method based on deep learning in low-light environment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630531-630531. |
| [7] | Min YANG, Guanjun LIU, Ziyuan ZHOU. Control of lunar landers based on secure reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630553-630553. |
| [8] | Yiquan WU, Kang TONG. Research advances on deep learning-based small object detection in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30848-030848. |
| [9] | Chen WANG, Caisheng WEI, Zeyang YIN, Kai JIN, Xingchen LI. Collaborative planning of multi-UAV trajectories and communication strategies considering channel resource constraints [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331837-331837. |
| [10] | Yizhe LUO, Hui ZHANG, Xinde YU, Zhao JIN, Shuo FENG, Yucheng SHI, Mingling XU. Hierarchical dynamic scheduling for multi-wave carrier-based aircraft ammunition support missions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331945-331945. |
| [11] | Xiangsong HUANG, Mengyu WANG, Dapeng PAN. Adversarial reinforcement learning-based UAV escape path planning method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 331637-331637. |
| [12] | Xiaowei JIANG, Yiquan WU. Research progress of UAV aerial image mosaic methods [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 331799-331799. |
| [13] | Yonggang YANG, Wentao JIANG, Zhiyun GAO. Real-time target detection algorithm for low altitude UAVs [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(16): 331619-331619. |
| [14] | Lin CHEN, Xiwen GU, Zhiying CHEN, Zhuo ZHANG, Xiaoliang SUN. High-precision monocular vision pose measurement for large distance span in carrier landing guidance [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 331568-331568. |
| [15] | Yu WANG, Zhipeng XIE, Yongjian TIAN, Guanglei MENG. Distributed UAV formation control with virtual structure guided reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 331354-331354. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

