[1] HUANG Z, WU J, LV C. Efficient Deep Rein-forcement Learning With Imitative Expert Priors for Autonomous Driving[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7391-7403. [2] ADIL M, SONG H, JAN M A, et al. UAV-Assisted IoT Applications, QoS Requirements and Challenges with Future Research Directions[J]. ACM Comput. Surv., 2024, 56(10): 251:1-251:35. [3] XUE Z, GONSALVES T. Vision Based Drone Obsta-cle Avoidance by Deep Reinforcement Learning[J]. AI, 2021, 2(3): 366-380. [4] LI J, QIN H, WANG J, et al. OpenStreetMap-Based Autonomous Navigation for the Four Wheel-Legged Robot Via 3D-Lidar and CCD Camera[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2708-2717. [5] CAI D, LI R, HU Z, et al. A comprehensive overview of core modules in visual SLAM framework[J]. Neu-rocomputing, 2024, 590: 127760. [6] YANG C, CHEN C, HE W, et al. Robot Learning System Based on Adaptive Neural Control and Dy-namic Movement Primitives[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 777-787. [7] ALMAZROUEI K, KAMEL I, RABIE T. Dynamic Obstacle Avoidance and Path Planning through Rein-forcement Learning[J/OL]. Applied Sciences, 2023, 13(14): 8174. [8] SATHYAMOORTHY A J, PATEL U, GUAN T, et al. Frozone: Freezing-Free, Pedestrian-Friendly Naviga-tion in Human Crowds[J]. IEEE Robotics and Auto-mation Letters,2020,5(3):4352-4359. [9] 周彬, 郭艳, 李宁, 等. 基于导向强化Q学习的无人机路径规划[J]. 航空学报, 2021, 42(9): 506-513. ZHOU B, GUO Y, LI N et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 506-513. [10] CHAI R, NIU H, CARRASCO J, et al. Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment[J]. IEEE Transactions on Neural Networks and Learning Sys-tems, 2022: 1-15. [11] XIE Z, DAMES P. DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles[J]. IEEE Transactions on Robotics, 2023: 1-20. [12] CAO X, REN L, SUN C. Research on Obstacle De-tection and Avoidance of Autonomous Underwater Vehicle Based on Forward-Looking Sonar[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, 2022: 1-11. [13] WANG W ye, MA F, LIU J. Course Tracking Control for Smart Ships Based on A Deep Deterministic Poli-cy Gradient-based Algorithm[C]//2019 5th Interna-tional Conference on Transportation Information and Safety (ICTIS). 2019: 1400-1404. [14] LILLICRAP T P, HUNT J , PRITZEL A, et al. Con-tinuous control with deep reinforcement learn-ing[M/OL]. arXiv,2019. [15] SILVER D, LEVER G, HEESS N, et al. Deterministic Policy Gradient Algorithms[C]//Proceedings of the 31st International Conference on Machine Learning. PMLR, 2014: 387-395. [16] FUJIMOTO S, HOOF H, MEGER D. Addressing Function Approximation Error in Actor-Critic Meth-ods[C]//Proceedings of the 35th International Confer-ence on Machine Learning. PMLR, 2018: 1587-1596. [17] 寇凯, 杨刚, 张文启, 等. 基于SAC的无人机自主导航方法研究[J]. 西北工业大学学报, 2024, 42(2): 310-318. KOU K, YANG G, ZHANG W Q, et al. Exploring UAV autonomous navigation algorithm based on soft ac tor-critic[J]. Journal of Northwestern Polytechnical University, [18] SINGLA A, PADAKANDLA S, BHATNAGAR S. Memory-Based Deep Reinforcement Learning for Ob-stacle Avoidance in UAV With Limited Environment Knowledge[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 107-118. [19] CUI Z, WANG Y. UAV Path Planning Based on Mul-ti-Layer Reinforcement Learning Technique[J]. IEEE Access, 2021, 9: 59486-59497. [20] XUE Y, CHEN W. A UAV Navigation Approach Based on Deep Reinforcement Learning in Large Cluttered 3D Environments[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3001-3014. [21] EVERETT M, CHEN Y F, HOW J P. Motion Plan-ning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning[C]//2018 IEEE/RSJ International Conference on Intelligent Ro-bots and Systems (IROS). 2018: 3052-3059. [22] KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partially observable stochas-tic domains[J]. Artificial Intelligence, 1998, 101(1): 99-134. [23] XIAO C, LU P, HE Q. Flying Through a Narrow Gap Using End-to-End Deep Reinforcement Learning Augmented With Curriculum Learning and Sim2Real[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2701-2708. [24] JIA J, XING X, CHANG D E. GRU-Attention based TD3 Network for Mobile Robot Navigation[C]//2022 22nd International Conference on Control, Automa-tion and Systems (ICCAS). 2022: 1642-1647 [25] DEY R, SALEM F M. Gate-variants of Gated Recur-rent Unit (GRU) neural networks[C/OL]//2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). 2017: 1597-1600.https:// ieeexplore.ieee.org/abstract/document/8053243. DOI:10.1109/MWSCAS.2017.8053243. [26] KALIDAS A P, JOSHUA C J, MD A Q, et al. Deep Reinforcement Learning for Vision-Based Navigation of UAVs in Avoiding Stationary and Mobile Obsta-cles[J]. Drones, 2023, 7(4): 245. [27] 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 154-178. YANG W P. Development trend of navigation guid-ance and control technology for new generation air-craft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 154-178. [28] PAN L, CAI Q, HUANG L. Softmax Deep Do-ble Deterministic Policy Gradients[J]. arXiv, 2020. |