Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (3): 630553.doi: 10.7527/S1000-6893.2024.30553
• Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology • Previous Articles
Min YANG, Guanjun LIU(), Ziyuan ZHOU
Received:
2024-04-19
Revised:
2024-05-07
Accepted:
2024-07-24
Online:
2024-08-21
Published:
2024-08-20
Contact:
Guanjun LIU
E-mail:liuguanjun@tongji.edu.cn
Supported by:
CLC Number:
Min YANG, Guanjun LIU, Ziyuan ZHOU. Control of lunar landers based on secure reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630553.
1 | SMIRNOV N N. Safety in space[J]. Acta Astronautica, 2023, 204: 679-681. |
2 | TIPALDI M, IERVOLINO R, MASSENIO P R. Reinforcement learning in spacecraft control applications: Advances, prospects, and challenges[J]. Annual Reviews in Control, 2022, 54: 1-23. |
3 | LORENZ R D. Planetary landings with terrain sensing and hazard avoidance: A review[J]. Advances in Space Research, 2023, 71(1): 1-15. |
4 | XIA Y Q, CHEN R F, PU F, et al. Active disturbance rejection control for drag tracking in Mars entry guidance[J]. Advances in Space Research, 2014, 53(5): 853-861. |
5 | DAI J, XIA Y Q. Mars atmospheric entry guidance for reference trajectory tracking[J]. Aerospace Science and Technology, 2015, 45: 335-345. |
6 | LONG J T, ZHU S Y, CUI P Y, et al. Barrier Lyapunov function based sliding mode control for Mars atmospheric entry trajectory tracking with input saturation constraint[J]. Aerospace Science and Technology, 2020, 106: 106213. |
7 | SHEN G H, XIA Y Q, ZHANG J H, et al. Adaptive fixed-time trajectory tracking control for Mars entry vehicle[J]. Nonlinear Dynamics, 2020, 102(4): 2687-2698. |
8 | DANG Q Q, GUI H C, LIU K, et al. Relaxed-constraint pinpoint lunar landing using geometric mechanics and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1617-1630. |
9 | 邓云山, 夏元清, 孙中奇, 等. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报, 2021, 42(11): 524834. |
DENG Y S, XIA Y Q, SUN Z Q, et al. Autonomous trajectory planning method for Mars precise landing in disturbed environment[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524834 (in Chinese). | |
10 | KHALID A, JAFFERY M H, JAVED M Y, et al. Performance analysis of Mars-powered descent-based landing in a constrained optimization control framework[J]. Energies, 2021, 14(24): 8493. |
11 | YUAN X, ZHU S Y, YU Z S, et al. Hazard avoidance guidance for planetary landing using a dynamic safety margin index[C]∥2018 IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-11. |
12 | D’AMBROSIO A, CARBONE A, SPILLER D, et al. PSO-based soft lunar landing with hazard avoidance: Analysis and experimentation[J]. Aerospace, 2021, 8(7): 195. |
13 | SHAKYA A K, PILLAI G, CHAKRABARTY S. Reinforcement learning algorithms: A brief survey[J]. Expert Systems with Applications, 2023, 231: 120495. |
14 | ZHOU Z Y, LIU G J, TANG Y. Multi-agent reinforcement learning: methods, applications, visionary prospects, and challenges[DB/OL]. arXiv preprint: 2305.10091, 2023. |
15 | 高锡珍, 汤亮, 黄煌. 深度强化学习技术在地外探测自主操控中的应用与挑战[J]. 航空学报, 2023, 44(6): 026762. |
GAO X Z, TANG L, HUANG H. Deep reinforcement learning in autonomous manipulation for celestial bodies exploration: Applications and challenges[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 026762 (in Chinese). | |
16 | MOHOLKAR U R, PATIL D D. Comprehensive survey on agent based deep learning techniques for space landing missions[J]. International Journal of Intelligent Systems and Applications in Engineering, 2024, 12(16S): 188-200. |
17 | CHENG L, WANG Z B, JIANG F H. Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm[J]. Astrodynamics, 2019, 3(4): 375-386. |
18 | HARRIS A, VALADE T, TEIL T, et al. Generation of spacecraft operations procedures using deep reinforcement learning[J]. Journal of Spacecraft and Rockets, 2022, 59(2): 611-626. |
19 | MALI R, KANDE N, MANDWADE S, et al. Lunar lander using reinforcement learning algorithm[C]∥2023 7th International Conference on Computing, Communication, Control and Automation (ICCUBEA). Piscataway: IEEE Press, 2023: 1-5. |
20 | DHARRAO D, GITE S, WALAMBE R. Guided cost learning for lunar lander environment using human demonstrated expert trajectories[C]∥2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS). Piscataway: IEEE Press, 2023: 1-6. |
21 | SHEN D L. Comparison of three deep reinforcement learning algorithms for solving the lunar lander problem[M]∥Advances in Intelligent Systems Research. Dordrecht: Atlantis Press International BV, 2024: 187-199. |
22 | GU S D, YANG L, DU Y L, et al. A review of safe reinforcement learning: Methods, theory and applications[DB/OL]. arXiv preprint: 2205.10330, 2022. |
23 | CHEN W Q, SUBRAMANIAN D, PATERNAIN S. Probabilistic constraint for safety-critical reinforcement learning[J]. IEEE Transactions on Automatic Control, 2024, 69(10): 6789-6804. |
24 | SELIM M, ALANWAR A, EL-KHARASHI M W, et al. Safe reinforcement learning using data-driven predictive control[C]∥2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA). Piscataway: IEEE Press, 2022: 1-6. |
25 | BRUNKE L, GREEFF M, HALL A W, et al. Safe learning in robotics: From learning-based control to safe reinforcement learning[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5: 411-444. |
26 | JIN P, TIAN J X, ZHI D P, et al. Trainify: A CEGAR-driven training and verification framework for safe deep reinforcement learning[C]∥International Conference on Computer Aided Verification. Cham: Springer, 2022: 193-218. |
27 | ZHI D P, WANG P X, CHEN C, et al. Robustness verification of deep reinforcement learning based control systems using reward martingales[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(18): 19992-20000. |
28 | TAPPLER M, CÓRDOBA F C, AICHERNIG B K, et al. Search-based testing of reinforcement learning[DB/OL]. arXiv preprint: 2205.04887, 2022. |
29 | TAPPLER M, PFERSCHER A, AICHERNIG B K, et al. Learning and repair of deep reinforcement learning policies from fuzz-testing data[C]∥Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024: 1-13. |
30 | WANG H N, LIU N, ZHANG Y Y, et al. Deep reinforcement learning: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1726-1744. |
31 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. |
32 | WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]∥Proceedings of the 33rd International Conference on International Conference on Machine Learni. New York: ACM, 2016, 48: 1995-2003. |
33 | VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100. |
34 | BROCKMAN G, CHEUNG V, PETTERSSON L, et al. OpenAI gym[DB/OL]. arXiv preprint: 1606.01540, 2016. |
35 | GUO S Q, YAN Q, SU X, et al. State-temporal compression in reinforcement learning with the reward-restricted geodesic metric[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5572-5589. |
36 | JIN P, WANG Y, ZHANG M. Efficient LTL model checking of deep reinforcement learning systems using policy extraction[C]∥The 34th International Conference on Software Engineering and Knowledge Engineering. San Francisco: KSI Research Inc., 2022: 357-362. |
37 | KORKMAZ E. Adversarial robust deep reinforcement learning requires redefining robustness[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8369-8377. |
[1] | Honglin ZHANG, Jianjun LUO, Weihua MA. Spacecraft game decision making for threat avoidance of space targets based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329136-329136. |
[2] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[3] | Shengzhe SHAN, Weiwei ZHANG. Air combat intelligent decision-making method based on self-play and deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328723-328723. |
[4] | Bing GAO, Zhejie ZHANG, Qijie ZOU, Zhiguo LIU, Xiling ZHAO. Multi-agent communication cooperation based on deep reinforcement learning and information theory [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 329862-329862. |
[5] | Zuolong LI, Jihong ZHU, Minchi KUANG, Jie ZHANG, Jie REN. Hierarchical decision algorithm for air combat with hybrid action based on deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530053-530053. |
[6] | Tiancai WU, Honglun WANG, Bin REN, Yiheng LIU, Xingyu WU, Guocheng YAN. Learning-based integrated fault-tolerant guidance and control for hypersonic vehicles considering avoidance and penetration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 329607-329607. |
[7] | Xuejian WANG, Yongming WEN, Xiaorong SHI, Ningning ZHANG, Jiexi LIU. Design of hybrid intelligent decision framework for multi⁃agent and multi⁃coupling tasks [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729770-729770. |
[8] | Chao YANG, Kaifu ZHANG. Stress prediction of fuselage tube section based on PSO⁃BiLSTM neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 426991-426991. |
[9] | Xizhen GAO, Liang TANG, Huang HUANG. Deep reinforcement learning in autonomous manipulation for celestial bodies exploration: Applications and challenges [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 26762-026762. |
[10] | Pan ZHOU, Jiangtao HUANG, Sheng ZHANG, Gang LIU, Bowen SHU, Jigang TANG. Intelligent air combat decision making and simulation based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126731-126731. |
[11] | Xiangwei ZHU, Dan SHEN, Kai XIAO, Yuexin MA, Xiang LIAO, Fuqiang GU, Fangwen YU, Kefu GAO, Jingnan LIU. Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 28569-028569. |
[12] | Lei DONG, Hongbing CHEN, Xi CHEN, Changxiao ZHAO. Distributed multi-agent coalition task allocation strategy for single pilot operation mode based on DQN [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327895-327895. |
[13] | Wenxue CHEN, Changsheng GAO, Wuxing JING. Trust region policy optimization guidance algorithm for intercepting maneuvering target [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327596-327596. |
[14] | Sheng ZHANG, Pan ZHOU, Yang HE, Jiangtao HUANG, Gang LIU, Jigang TANG, Huaizhi JIA, Xin DU. Air combat maneuver decision-making test based on deep reinforcement learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 128094-128094. |
[15] | ZHAO Liangyu, LI Dan, ZHAO Chenyue, JIANG Fei. Some achievements on detection methods of UAV autonomous landing markers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 25882-025882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341