Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (13): 531195.doi: 10.7527/S1000-6893.2024.31195
• Articles • Previous Articles
Fang GUO1, Wei HAN1, Yujie LIU1,2, Jie LIU3, Xichao SU4(
), Liangliang CHENG4
Received:2024-09-12
Revised:2024-10-09
Accepted:2024-10-22
Online:2024-10-30
Published:2024-10-29
Contact:
Xichao SU
E-mail:suxich@126.com
Supported by:CLC Number:
Fang GUO, Wei HAN, Yujie LIU, Jie LIU, Xichao SU, Liangliang CHENG. Scheduling for maintenance and service support of carrier-based aircraft based on variable operation process[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531195.
Table 3
Personnel and resource demand and time consumption in single aircraft support operations
工序 序号 | Kp | Kq | 作战任务1 | 作战任务2 | 作战任务3 | |||
|---|---|---|---|---|---|---|---|---|
| 场景1 | 场景2 | 场景1 | 场景2 | 场景1 | 场景2 | |||
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 2 | 2 | 2 | 5 | 5 | 5 | 5 | 4 | 4 |
| 3 | 4 | 9 | 9 | 10 | 10 | 11 | 11 | |
| 4 | 3 | 2 | 3 | 3 | 3 | 3 | 6 | 6 |
| 5 | 1 | 2 | 2 | 2 | 2.5 | 2.5 | 3.8 | 3.8 |
| 6 | 2 | 2 | 5 | 5 | 6 | 6 | 2 | 2 |
| 7 | 4 | 2 | 4 | 4 | 5 | 5 | 6 | 6 |
| 8 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
| 9 | 1 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| 10 | 4 | 8 | 8 | 9 | 9 | 8 | 8 | |
| 11 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
| 12 | 4 | 2,5 | 1.4 | 1.4 | 1.5 | 1.5 | 1.8 | 1.8 |
| 13 | 3 | 6 | 0 | 3 | 0 | 3 | 0 | 3 |
| 14 | 3 | 6 | 6 | 6 | 6 | 6 | 7 | 7 |
| 15 | 3 | 6 | 0 | 3 | 0 | 3 | 0 | 3 |
| 16 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 17 | 3 | 6 | 0 | 3 | 0 | 3 | 0 | 3 |
| 18 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 19 | 3 | 6 | 0 | 3 | 0 | 3 | 0 | 3 |
| 20 | 3 | 6 | 6 | 6 | 6 | 6 | 7 | 7 |
| 21 | 4 | 1 | 12 | 12 | 15 | 15 | 13 | 13 |
| 22 | 4 | 2,5 | 1.4 | 1.4 | 1.5 | 1.5 | 1.8 | 1.8 |
| 23 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 24 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Table 5
Algorithm comparison results
| 算法 | 指标 | 保障任务1 | 保障任务2 | 保障任务3 | |||
|---|---|---|---|---|---|---|---|
| 场景1 | 场景2 | 场景1 | 场景2 | 场景1 | 场景2 | ||
| IPSO | W | 41.76 | 56.04 | 60.22 | 91.35 | 72.21 | 115.74 |
| A | 40.77 | 55.84 | 59.72 | 90.35 | 71.36 | 113.93 | |
| B | 39.92 | 55.58 | 59.42 | 89.72 | 70.63 | 112.78 | |
| S | 0.59 | 0.16 | 0.27 | 0.59 | 0.61 | 0.99 | |
| PSO | W | 41.91 | 56.84 | 62.43 | 94.00 | 74.32 | 117.08 |
| A | 41.14 | 56.60 | 61.58 | 92.96 | 73.34 | 115.32 | |
| B | 40.57 | 56.14 | 60.01 | 91.77 | 71.32 | 114.18 | |
| S | 0.48 | 0.27 | 0.82 | 0.74 | 1.19 | 0.97 | |
| IAFSA | W | 44.69 | 57.56 | 65.38 | 96.18 | 78.93 | 116.92 |
| A | 43.79 | 57.37 | 64.68 | 95.53 | 77.61 | 116.36 | |
| B | 42.85 | 57.15 | 63.89 | 95.16 | 76.05 | 115.89 | |
| S | 0.59 | 0.15 | 0.59 | 0.38 | 1.23 | 0.36 | |
| GA | W | 45.69 | 59.28 | 65.36 | 96.92 | 77.82 | 119.17 |
| A | 44.47 | 58.54 | 64.23 | 95.18 | 77.24 | 118.54 | |
| B | 43.47 | 58.09 | 62.60 | 94.04 | 76.67 | 117.69 | |
| S | 0.80 | 0.40 | 1.02 | 1.16 | 0.41 | 0.49 | |
| DE | W | 44.67 | 58.01 | 65.11 | 95.73 | 77.45 | 118.76 |
| A | 44.24 | 57.79 | 64.52 | 95.30 | 76.43 | 118.31 | |
| B | 43.67 | 57.47 | 63.39 | 94.70 | 75.57 | 117.63 | |
| S | 0.36 | 0.22 | 0.62 | 0.34 | 0.64 | 0.46 | |
| GWO | W | 43.57 | 57.05 | 64.26 | 95.94 | 76.13 | 119.07 |
| A | 42.56 | 56.80 | 63.52 | 95.07 | 75.43 | 117.08 | |
| B | 41.29 | 56.62 | 62.12 | 94.17 | 75.09 | 115.78 | |
| S | 0.88 | 0.15 | 0.74 | 0.72 | 0.40 | 1.10 | |
| M2SITRI | W | 44.21 | 59.22 | 65.55 | 95.62 | 77.71 | 119.43 |
| A | 43.74 | 57.78 | 64.47 | 94.86 | 77.09 | 118.04 | |
| B | 43.34 | 57.00 | 63.90 | 93.80 | 75.38 | 116.90 | |
| S | 0.30 | 0.77 | 0.59 | 0.61 | 0.86 | 0.81 | |
Table 6
Comparison results of different processes
| 流程 | 指标 | 保障任务1 | 保障任务2 | 保障任务3 | |||
|---|---|---|---|---|---|---|---|
| 场景1 | 场景2 | 场景1 | 场景2 | 场景1 | 场景2 | ||
| 固定流程 | W | 58.80 | 81.66 | 81.81 | 124.46 | 98.10 | 154.82 |
| A | 58.41 | 80.04 | 80.67 | 122.02 | 96.52 | 152.93 | |
| B | 58.01 | 78.22 | 79.84 | 120.41 | 95.20 | 150.87 | |
| S | 0.30 | 1.13 | 0.66 | 1.44 | 1.05 | 1.48 | |
| ra/% | W | 28.98 | 31.37 | 26.39 | 26.60 | 26.39 | 25.24 |
| A | 30.21 | 30.23 | 25.96 | 25.96 | 26.07 | 25.50 | |
| B | 31.18 | 28.94 | 25.57 | 25.49 | 25.81 | 25.25 | |
| [1] | LIU J, DONG X Z, WANG X W, et al. A homogenization-planning-tracking method to solve cooperative autonomous motion control for heterogeneous carrier dispatch systems[J]. Chinese Journal of Aeronautics, 2022, 35(9): 293-305. |
| [2] | LIU Y J, HAN W, SU X C, et al. Optimization of fixed aviation support resource station configuration for aircraft carrier based on aircraft dispatch mission scheduling[J]. Chinese Journal of Aeronautics, 2023, 36(2): 127-138. |
| [3] | SU X C, HAN W, WU Y, et al. A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, 2018(1): 6932985. |
| [4] | 李亚飞, 高磊, 蒿宏杰, 等. 舰载机保障作业人机协同决策方法[J]. 中国科学: 信息科学, 2023, 53(12): 2493-2510. |
| LI Y F, GAO L, HAO H J, et al. Human-machine collaborative decision-making for carrier aircraft support operations[J]. Scientia Sinica (Informationis), 2023, 53(12): 2493-2510 (in Chinese). | |
| [5] | SU X C, CUI R W, LI C J, et al. A heuristic solution framework for the resource-constrained multi-aircraft scheduling problem with transfer of resources and aircraft[J]. Expert Systems with Applications, 2023, 228: 120430. |
| [6] | JIANG T T, SU X C, HAN W. Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm[C]∥2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). Piscataway: IEEE Press, 2017: 136-140. |
| [7] | 苏析超, 韩维, 萧卫, 等. 基于Memetic算法的舰载机舰面一站式保障调度[J]. 系统工程与电子技术, 2016, 38(10): 2303-2309. |
| SU X C, HAN W, XIAO W, et al. Pit-stop support scheduling on deck of carrier plane based on Memetic algorithm[J]. Systems Engineering and Electronics, 2016, 38(10): 2303-2309 (in Chinese). | |
| [8] | 史玮韦, 韩维, 司维超. 舰载机多机直接机务准备优化研究[J]. 计算机工程与设计, 2013, 34(12): 4214-4219. |
| SHI W W, HAN W, SI W C. Optimization of direct flight line maintenance process for multi-carrier planes[J]. Computer Engineering and Design, 2013, 34(12): 4214-4219 (in Chinese). | |
| [9] | HAN W, GUO F, SU X C. A reinforcement learning method for a hybrid flow-shop scheduling problem[J]. Algorithms, 2019, 12(11): 222. |
| [10] | YU L F, ZHU C, SHI J M, et al. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility[J]. Scientific Programming, 2017, 2017(1): 2463252. |
| [11] | CUI R W, HAN W, SU X C, et al. A multi-objective hyper heuristic framework for integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration[J]. Aerospace Science and Technology, 2020, 107: 106346. |
| [12] | 崔荣伟, 韩维, 苏析超, 等. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893. |
| CUI R W, HAN W, SU X C, et al. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage[J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893 (in Chinese). | |
| [13] | SU X C, HAN W, WU Y, et al. A robust scheduling optimization method for flight deck operations of aircraft carrier with ternary interval durations[J]. IEEE Access, 2018, 6: 69918-69936. |
| [14] | 万兵, 苏析超, 郭放, 等. 不确定性工时下甲板作业的前摄性鲁棒调度[J]. 航空学报, 2022, 43(12): 325971. |
| WAN B, SU X C, GUO F, et al. Proactive robust scheduling of aircraft carrier flight deck operations with uncertain activity durations[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 325971 (in Chinese). | |
| [15] | YUAN P L, HAN W, SU X C, et al. A dynamic scheduling method for carrier aircraft support operation under uncertain conditions based on rolling horizon strategy[J]. Applied Sciences, 2018, 8(9): 1546. |
| [16] | 刘东, 吴家仁, 周一舟, 等. 舰载机综合保障技术实践及发展展望[J]. 航空学报, 2021, 42(8): 525802. |
| LIU D, WU J R, ZHOU Y Z, et al. Practice and prospects of comprehensive support technologies of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525802 (in Chinese). | |
| [17] | CUI R W, HAN W, SU X C, et al. A dual population multi-operator genetic algorithm for flight deck operations scheduling problem[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 331-346. |
| [18] | 韩维, 崔荣伟, 苏析超, 等. 基于双种群模糊引力搜索算法的舰载机甲板作业调度[J]. 控制与决策, 2021, 36(11): 2751-2759. |
| HAN W, CUI R W, SU X C, et al. Flight deck operations scheduling based on dual population fuzzy gravitational search algorithm[J]. Control and Decision, 2021, 36(11): 2751-2759 (in Chinese). | |
| [19] | 苏析超, 伍恒, 崔荣伟, 等. 基于边际-人工蜂群算法的舰载机机群出动保障人员配置-调度联合优化方法[J]. 北京航空航天大学学报, 2020, 46(11): 2056-2068. |
| SU X C, WU H, CUI R W, et al. Joint optimization method for carrier-based aircraft fleet sortie support personnel configuration and scheduling based on marginal-ABC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2056-2068 (in Chinese). | |
| [20] | 寇贞贞, 李苏剑, 顾涛, 等. 不完全维修条件下的备件多级库存优化[J]. 计算机集成制造系统, 2021, 27(6): 1749-1759. |
| KOU Z Z, LI S J, GU T, et al. Multi-echelon inventory optimization of spare parts under imperfect maintenance conditions[J]. Computer Integrated Manufacturing Systems, 2021, 27(6): 1749-1759 (in Chinese). | |
| [21] | 刘哲, 马俊飞, 陈佳峰, 等.基于改进灰狼算法的舰载机弹药保障调度优化[J]. 系统工程与电子技术, 2024, 46(4): 1264-1272. |
| LIU Z, MA J F, CHEN J F, et al. Optimization of carrier aircraft ammunition support scheduling based on improved grey wolf algorithm[J]. Systems Engineering and Electronics, 2024, 46(4): 1264-1272 (in Chinese). | |
| [22] | GUO F, HAN W, SU X C, et al. A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck[J]. Defence Technology, 2023, 22: 119-134. |
| [23] | 张少辉, 刘舜, 李亚飞, 等. 航空母舰舰载机弹药保障作业调度优化算法[J]. 航空学报, 2023, 44(20): 228485. |
| ZHANG S H, LIU S, LI Y F, et al. Optimization algorithm for ammunition support operation scheduling of carrier-borne aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228485 (in Chinese). | |
| [24] | 金钊,金璐,张博闻,等.舰载机弹药保障作业调度的形式化建模与验证[J/OL].软件学报,(2024-05-13)[2024-09-12]. . |
| JIN Z, JIN L, ZHANG B W, et al. Formal modeling and verification of carrier-borne aircraft ammunition support operation scheduling[J/OL]. Journal of Software, (2024-05-13)[2024-09-12]. (in Chinese). | |
| [25] | 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 222314. |
| SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314 (in Chinese). | |
| [26] | 范晓临, 张旭东, 邹渊, 等. 一种基于简化可视图的建图和规划方法[J]. 汽车工程, 2024, 46(7): 1249-1258. |
| FAN X L, ZHANG X D, ZOU Y, et al. A mapping and planning method based on simplified visibility graph[J]. Automotive Engineering, 2024, 46(7): 1249-1258 (in Chinese). | |
| [27] | 郭放, 刘玉杰, 韩维, 等. 基于MC-GERT的舰载机出动回收作业流程时间不确定性分析[J]. 北京航空航天大学学报, 2025, 51(3): 795-805. |
| GUO F, LIU Y J, HAN W, et al. Time uncertainty analysis on cyclic operations of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 795-805 (in Chinese). | |
| [28] | PELLERIN R, PERRIER N, BERTHAUT F. A survey of hybrid metaheuristics for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2020, 280(2): 395-416. |
| [29] | 叶倩琳, 王万良, 王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120, 1232. |
| YE Q L, WANG W L, WANG Z. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(6): 1107-1120, 1232 (in Chinese). | |
| [30] | MAZHOUD I, HADJ-HAMOU K, BIGEON J, et al. Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4): 1263-1273. |
| [31] | BAI X, HOU Y, HAN H G. Adaptive knowledge transfer-based particle swarm optimization for constrained multitask optimization[J]. Swarm and Evolutionary Computation, 2024, 87: 101569. |
| [32] | WANG H X, SHI L B. A multi-direction guided mutation-driven stable swarm intelligence algorithm with translation and rotation invariance for global optimization[J]. Applied Soft Computing, 2024, 159: 111614. |
| [33] | EL-KHALDI K, SALEEBY E. On the density of lines and Santalo’s formula for computing geometric size measures[J]. Monte Carlo Methods and Applications 2020, 26(4): 315-323. |
| [34] | BIGLER T, GNÄGI M, TRAUTMANN N. MIP-based solution approaches for multi-site resource-constrained project scheduling[J]. Annals of Operations Research, 2024, 337(2): 627-647. |
| [35] | FENG J H, ZHANG J, ZHU X S, et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76(16): 17405-17436. |
| [36] | 郭霖瀚, 康锐, 文佳. 以保障活动为中心的装备保障资源数量预测[J]. 航空学报, 2009, 30(5): 919-924. |
| GUO L H, KANG R, WEN J. Quantitative forecast of support activity centered equipment support resources[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 919-924 (in Chinese). | |
| [37] | BHATTACHARYA A, PAL M. Covering of fuzzy graphs and its application in emergency aircraft landing using particle swarm optimization method[J]. Applied Soft Computing, 2024, 165: 112035. |
| [38] | SUN Y J, WU Y X, LIU Z J. An improved differential evolution with adaptive population allocation and mutation selection[J]. Expert Systems with Applications, 2024, 258: 125130. |
| [39] | SUN K X, ZHENG D B, SONG H H, et al. Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system[J]. Expert Systems with Applications, 2023, 215: 119359. |
| [40] | ZHANG T, YU L Y, LI S B, et al. Unmanned aerial vehicle 3D path planning based on an improved artificial fish swarm algorithm[J]. Drones, 2023, 7(10): 636. |
| [41] | 张安, 杨咪, 毕文豪, 等. 基于多策略GWO算法的不确定环境下异构多无人机任务分配[J]. 航空学报, 2023, 44(8): 327115. |
| ZHANG A, YANG M, BI W H, et al. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327115 (in Chinese). |
| [1] | Xiaochen LYU, Jingping SHI, Yongxi LYU, Gengnong LI. Flow angle reconstruction algorithm for MAGIC CARPET landing with sensor failure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531159-531159. |
| [2] | Yu LI, Tongwen CHEN, Zhigang WANG, Chiyung WEN, Xiaoxiong LIU. Incremental control of direct lift landing based on predefined-time theory [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531163-531163. |
| [3] | Wei CHEN, Lulu LI, Dong CHEN, Shaohui ZHANG, Yafei LI, Ke WANG, Yuanyuan JIN, Mingliang XU. Multi-aircraft cooperative decision-making methods driven by differentiated support demands for carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 331274-331274. |
| [4] | Guang LIU, Hua WANG, Youfang LIN, Shuo HE, Yafei LI, Mingliang XU. Adaptive batch matching decision method for carrier-based aircraft support operations [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330615-330615. |
| [5] | Yangchao HE, Jiong LI, Lei SHAO, Xiangwei BU, Jinlin ZHANG, Boyang JI. Reentry target tracking algorithm based on improved “current” statistical model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730800-730800. |
| [6] | Dapeng ZHOU, Xiaolei QU. Knowledge-based intelligent pigeon-inspired optimization of carrier-based aircraft landing control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730801-730801. |
| [7] | FU Jiawei, YU Jialong, LIU Chao, WANG Muguo, WANG Zizi. Key technologies of aerodynamics design of stealth carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525804-525804. |
| [8] | WANG Xiao, CHENG Jianhui, SHEN Tianrong, XU Baocheng, MENG Xuan. Numerical simulation research of influence of wake flow field on inlet temperature field of carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525795-525795. |
| [9] | CHEN Yueliang, CHEN Liang, BIAN Guixue, YANG Xiangning, GUAN Yu, ZHANG Yong, HE Gang. Corrosion protection control and calendar life design of advanced carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525786-525786. |
| [10] | LIU Dong, WU Jiaren, ZHOU Yizhou, LIU Zhenxiang, LI Yu, WANG Mingze. Practice and prospects of comprehensive support technologies of carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525802-525802. |
| [11] | WANG Yongqing. Fixed-wing carrier-based aircraft: Key technologies and future development [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525859-525859. |
| [12] | WANG Yongqing, YU Hao, SHI Yan. Dynamics and kinematics characteristics of carrier-based aircraft ski-jump take-off [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525853-525853. |
| [13] | CAO Qikai, WANG Yan, YAO Niankui, HE Gang, CHEN Zhongming, ZHANG Guijiang, TIAN Zhiliang, WU Xinyue. Development and application of strength design technology of advanced carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525793-525793. |
| [14] | JIANG Qideng. Statistical modeling and prediction of arresting force for carrier-based aircraft based on flight parameters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 224030-224030. |
| [15] | LIU Jie, HAN Wei, XU Weiguo, LIU Chun, YUAN Peilong, CHEN Zhigang, PENG Haijun. Optimal path tracking control of carrier-based aircraft on the deck based on RHC [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 322842-322842. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

