[1] 刘相春, 卢晶, 黄祥钊. 国外航母舰载机出动回收能力指标体系分析[J]. 中国舰船研究, 2011, 6(4):1-7. LIU X C, LU J, HUANG X Z. Analysis on the index system of sortie generation capacity of embarked aircrafts[J]. Chinese Journal of Ship Research, 2011, 6(4):1-7(in Chinese). [2] 魏钢. F-35"闪电"Ⅱ战斗机[M]. 北京:航空工业出版社, 2008:112 WEI G. F-35 "Lightening" Ⅱ fighter[M]. Beijing:Aviation Industry Press, 2008:112(in Chinese). [3] 海军装备部飞机办公室, 中国航空工业发展研究中心. 国外舰载机使用保障[M]. 北京:航空工业出版社, 2008:46, 104-105. Naval Armament Department Aircraft Office, China Aerospace Industry Development Research Center. Operational support of foreign carrier based aircraft[M]. Beijing:Aviation Industry Press, 2008:46, 104-105(in Chinese). [4] 李明. 国外航母作战系统发展研究[J]. 舰船电子工程, 2013, 33(5):6-9, 29. LI M. Development of foreign aircraft carrier combat system[J]. Ship Electronic Engineering, 2013, 33(5):6-9, 29(in Chinese). [5] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5):221675. QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221675(in Chinese). [6] 胡小兵. 舰载机海上维修作业难点及对策思考[J]. 航空维修与工程, 2019(12):26-27. HU X B. Difficulties and countermeasures in marine maintenance of carrier-based aircraft[J]. Aviation Maintenance & Engineering, 2019(12):26-27(in Chinese). [7] 尹卓. 美航母舰载机作战使用[J]. 舰船模拟, 2009, 18(12):23-25. YIN Z. US carrier aircraft combat use[J]. Ship Simulation, 2009, 18(12):23-25(in Chinese). [8] HARRIS J W. The sortie generation rate model[C]//Proceedings of the Winter Simulation Conference. Piscataway:IEEE Press, 2002:864-868. [9] FAAS P D. Simulation of Autonomic Logistics System (ALS) sortie generation[D]. Wright-Patterson:Air Force Institute of Technology, 2003. [10] 潘珂. 基于BP网络的舰载机出动回收能力评价模型研究[D]. 哈尔滨:哈尔滨工程大学, 2016. PAN K. Research on the aircraft dispatch-recovery capacity based on the evaluation model of BP network[D]. Harbin:Harbin Engineering University, 2016(in Chinese). [11] 周晓光, 赵仁厚, 冯百胜, 等. 航母作战部署进程中的舰载机出动架次规划研究[J]. 火力与指挥控制, 2014, 39(1):48-52. ZHOU X G, ZHAO R H, FENG B S, et al. Study of sortie of carrier-borne aircraft for an aircraft carrier in transit[J]. Fire Control & Command Control, 2014, 39(1):48-52(in Chinese). [12] 栾添添. 舰载机出动过程模型与评估方法能力研究[D]. 哈尔滨:哈尔滨工程大学, 2018. LUAN T T. Research on model and evaluation method capacity for sortie process of carrier aircraft[D]. Harbin:Harbin Engineering University, 2018(in Chinese). [13] 魏昌全, 陈春良, 王保乳. 基于出动方式的舰载机航空保障调度模型[J]. 海军航空工程学院学报, 2012, 27(1):111-114. WEI C Q, CHEN C L, WANG B R. Research on the aircraft support scheduling model of carrier-based aircraft based on launch mode[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(1):111-114(in Chinese). [14] EVANS J, CORNFORD S, FEATHER M S. Model based mission assurance:NASA's assurance future[C]//2016 Annual Reliability and Maintainability Symposium (RAMS). Piscataway:IEEE Press, 2016:1-7. [15] MACHIN M, SAEZ E, VIRELIZIER P, et al. Modeling functional allocation in AltaRica to guarantee MBSE/MBSA consistency[M]. Berlin:Springer, 2019. [16] 江永泉. 舰载机设计特点与技术性能分析[M]. 北京:航空工业出版社, 2013. JIANG Y Q. Design feature and technical performance analysis of carrier-based aircraft[M]. Beijing:Aviation Industry Press, 2013(in Chinese). [17] 吴超云, 明志茂, 黄英龄. 舰载装备环境剖面构建及环境要求分析[J]. 国防科技工业, 2016(2):45-46. WU C Y, MING Z M, HUANG Y L. Construction of ship-borne equipment environmental profile and analysis of environmental requirements[J]. Defense Science & Technology Industry, 2016(2):45-46(in Chinese). [18] 史为民, 李明, 常海娟. 舰载机环境分析及环境试验技术探讨[J]. 航空标准化与质量, 2014(2):29-32. SHI W M, LI M, CHANG H J. Technology discussion of carrier aircraft environment analysis and environmental test of carrier aircraft[J]. Aeronautic Standardization & Quality, 2014(2):29-32(in Chinese). [19] 徐丽, 陈跃良, 武书阁, 等. 舰载机舰面停放环境及腐蚀情况研究[J]. 飞机设计, 2016, 36(6):54-57. XU L, CHEN Y L, WU S G, et al. The study about the deck park environment of carrier-based aircraft and corrosive state[J]. Aircraft Design, 2016, 36(6):54-57(in Chinese). [20] 孙盛坤, 孙志华, 汤智慧, 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3):18-22. SUN S K, SUN Z H, TANG Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equipment Environmental Engineering, 2017, 14(3):18-22(in Chinese). [21] 陈跃良, 王安东, 卞贵学, 等. 海军某型飞机表面清洗技术[J]. 清洗世界, 2014, 30(4):1-6. CHEN Y L, WANG A D, BIAN G X, et al. Exterior washing technology of navy aircraft[J]. Cleaning World, 2014, 30(4):1-6(in Chinese). [22] 赵安家, 施广生. 飞机表面的清洗[J]. 飞机设计, 2018, 38(2):72-76. ZHAO A J, SHI G S. Research on aircraft surface cleaning[J]. Aircraft Design, 2018, 38(2):72-76(in Chinese). [23] 谭大力, 王云飞, 于连飞, 等. 基于整数线性规划方法的舰载机航空保障资源优化调度[J]. 中国舰船研究, 2019, 14(5):145-151. TAN D L, WANG Y F, YU L F, et al. Optimal scheduling of aviation support resources for carrier based aircrafts based on integer linear progra mming[J]. Chinese Journal of Ship Research, 2019, 14(5):145-151(in Chinese). [24] 崔博. 舰载机保障人员配置优化仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2016. CUI B. Research on simulation and allocation optimization of support personnel of carrier-based aircraft[D]. Harbin:Harbin Engineering University, 2016(in Chinese). [25] 龙钰洋. 基于遗传算法的舰载机保障人员配置优化研究[D]. 哈尔滨:哈尔滨工程大学, 2017. LONG Y Y. Research on genetic algorithm of the security personnel allocation optimization[D]. Harbin:Harbin Engineering University, 2017(in Chinese). [26] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese). [27] 王海峰, 王宏亮, 阳纯波. 航空装备保障智能化发展认识与探讨[J]. 测控技术, 2020, 39(12):1-9, 27. WANG H F, WANG H L, YANG C B. Understanding and discussion on intelligence-based aviation materiel support development[J]. Measurement & Control Technology, 2020, 39(12):1-9, 27(in Chinese). [28] 张宇, 黄建新. 应用OODA环模型研究装备对体系贡献程度[J]. 现代防御技术, 2017, 45(2):177-182. ZHANG Y, HUANG J X. Study on contribution degree of equipment to system of systems using OODA loop model[J]. Modern Defense Technology, 2017, 45(2):177-182(in Chinese). [29] 刘相春. 美国"福特"级航母"一站式保障"技术特征和关键技术分析[J]. 中国舰船研究, 2013, 8(6):1-5. LIU X C. Technical features and critical technologies for the "pit-stop" aircraft servicing adopted by Ford class aircraft carriers[J]. Chinese Journal of Ship Research, 2013, 8(6):1-5(in Chinese). [30] HADDAD G, SANDBORN P, PECHT M. Using real options to manage condition-based maintenance enabled by PHM[C]//2011 IEEE Conference on Prognostics and Health Management. Piscataway:IEEE Press, 2011:1-7. |