[1] CONGRESSIONAL B O. The cost of replacing today's naval aviation fleet[EB/OL]. (2020-01-06)[2021-05-20]. www.cbo.gov/publication/55949. [2] JERRY H. Retreat from range:The rise and fall of carrier aviation[EB/OL]. (2015-10-19)[2021-05-20].https://www.cnas.org/publications/reports/retreat-from-range-the-rise-and-fall-of-carrier-aviation. [3] 洪伟宏, 王兵. 从技术特征和设计思想看航母划代[J]. 国防, 2009(10):78-81. HONG W H, WANG B. Research of aircraft carrier generation from the perspective of technical features and design principles[J]. National Defense, 2009(10):78-81(in Chinese). [4] 匡兴华. 美国海军航母编队的作战能力分析[J]. 国防科技, 2009, 30(6):58-63. KUANG X H. A combat capability analysis of the US aircraft carrier fleet[J]. National Defense Science & Technology, 2009, 30(6):58-63(in Chinese). [5] BRYAN C, ADAM L, PETER H, et al. Regaining the high ground at sea:Transforming the U.S. navy's carrier air wing for great power competition[EB/OL]. (2018-12-14)[2021-05-20]. https://csbaonline.org/research/publications/regaining-the-high-ground-at-sea-transforming-the-u.s.-navys-carrier-air-wi. [6] MCCLURKEN J. Naval history and heritage command[J]. Journal of American History, 2015, 102(2):638. [7] COHEN E A, FRIEDMAN N. Seapower and space:From the dawn of the missile age to net-centric warfare[J]. Foreign Affairs, 2001, 80(2):175. [8] KAPURCH S J, RUSSELL S. Naval aviation vision:New challenges. enduring realities[J]. Naval Aviation News, 1997. [9] 曲东才, 周胜明. 舰载机起飞技术研究[J]. 航空科学技术, 2004, 15(4):25-29. QU D C, ZHOU S M. Study of technologies of shipboard plane taking off[J]. Aeronautical Science and Technology, 2004, 15(4):25-29(in Chinese). [10] 张勇, 周益. 美国舰载航空甲板运动准则[J]. 中国舰船研究, 2012, 7(1):7-11. ZHANG Y, ZHOU Y. Deck motion criteria for flight operations aboard USN aircraft carriers[J]. Chinese Journal of Ship Research, 2012, 7(1):7-11(in Chinese). [11] 王豪. 国外舰载机滑跃起飞关键技术分析[J]. 教练机, 2018(3):27-30. WANG H. Analysis on the key technique of ski-jump takeoff of oversea carrier-based aircraft[J]. Trainer, 2018(3):27-30(in Chinese). [12] 王俊彦. 舰载机弹射起飞技术的应用与发展[J]. 科技信息, 2009(23):430,566. WANG J Y. Application and development of carrier-based aircraft ejection take-off technology[J]. Science & Technology Information, 2009(23):430, 566(in Chinese). [13] 王永庆, 罗云宝, 王奇涛, 等. 面向机舰适配的舰载飞机起降特性分析[J]. 航空学报, 2016, 37(1):269-277. WANG Y Q, LUO Y B, WANG Q T, et al. Carrier suitability-oriented launch and recovery characteristics of piloted carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):269-277(in Chinese). [14] WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development[C]//2013 International Powered Lift Conference. Reston:AIAA, 2013. [15] DENHAM J W. Project MAGIC CARPET: "Advanced controls and displays for precision carrier landings"[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [16] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese). [17] 杨一栋, 余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社, 2006. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M].Beijing:National Defense Industry Press, 2006(in Chinese). [18] COLIN B. X-47B head to sea[EB/OL]. Naval Aviation News (2013-02-04)[2021-05-21]. https://navalaviationnews.navylive.dodlive.mil/2013/02/04/x-47b-heads-to-sea. [19] 石剑琛. 美国海军航母作战系统发展及展望[J]. 舰船科学技术, 2012, 34(4):132-135, 139. SHI J C. The development and prospect of US navy carrier combat system[J]. Ship Science and Technology, 2012, 34(4):132-135, 139(in Chinese). [20] 李明. 国外航母作战系统发展研究[J]. 舰船电子工程, 2013, 33(5):6-9, 29. LI M. Development of foreign aircraft carrier combat system[J]. Ship Electronic Engineering, 2013, 33(5):6-9, 29(in Chinese). [21] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5):221675. QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221675(in Chinese). [22] 杨放青. 航母飞行甲板作业能力分析与优化研究[D]. 哈尔滨:哈尔滨工程大学, 2018. YANG F Q. Analysis and optimization research on the aircraft carrier's flight deck's operational capability[D]. Harbin:Harbin Engineering University, 2018(in Chinese). [23] 刘珏, 王能建, 罗旭, 等. 采用改进遗传算法的舰载机保障调度方法[J]. 国防科技大学学报, 2020, 42(2):194-205. LIU J, WANG N J, LUO X, et al. Deck operation scheduling method of carrier-based aircraft based on improved genetic algorithm[J]. Journal of National University of Defense Technology, 2020, 42(2):194-205(in Chinese). [24] 葛超. 舰载机舰面保障调度算法研究[D]. 长春:吉林大学, 2020. GE C. Research on carrier aircraft deck support scheduling algorithm[D]. Changchun:Jilin University, 2020(in Chinese). [25] 孙长友. 舰载机保障作业调度计划优化研究[D]. 哈尔滨:哈尔滨工程大学, 2016. SUN C Y. Research on the optimization of carrier-based aircraft security operation scheduling[D]. Harbin:Harbin Engineering University, 2016(in Chinese). [26] 王永庆, 王光耀. 国外"轻重搭配"的战斗机装备发展模式分析[J]. 国际航空, 2012(11):54-57. WANG Y Q, WANG G Y. Performance and cost, the key factors for heavy and light fight collocation[J]. International Aviation, 2012(11):54-57(in Chinese). [27] O'ROURKE R. Navy network-centric warfare concept:Key programs and issues for congress[C]//Congressional Research Service, 2004. [28] MCCONNELL J H, JORDAN L L. Naval integrated fire control-counter air capability-based system of systems engineering[J]. Department of Defense, 2010, 30. [29] ENGLAND G, CLARK V, JONES J L. Naval transformation roadmap:Power and access from the sea[R]. Office of the Chief of Naval Operations, 2004. [30] BOARD N S. FORCEnet implementation strategy[M]. Washington, D.C.:National Academies Press, 2005. [31] SENGLAUB M. Course of action analysis within an effects-based operational context[R]. Office of Scientific and Technical Information (OSTI), 2001. [32] 孙聪, 王光耀, 张子军. 隐身技术对飞机作战效能影响研究[J]. 飞行力学, 2003, 21(1):5-7. SUN C, WANG G Y, ZHANG Z J. A research on effect of stealth technique on aircraft combat effectiveness[J]. Flight Dynamics, 2003, 21(1):5-7(in Chinese). |