Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (12): 231312.doi: 10.7527/S1000-6893.2024.31312
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles
Sisi YUAN1, Xuming NIU1,2,3,4, Zhigang SUN1,2,3,4(
), Yingdong SONG1,2,3
Received:2024-10-08
Revised:2024-11-01
Accepted:2024-11-13
Online:2024-11-22
Published:2024-11-18
Contact:
Zhigang SUN
E-mail:szg_mail@nuaa.edu.cn
CLC Number:
Sisi YUAN, Xuming NIU, Zhigang SUN, Yingdong SONG. Load spectrum correction method considering performance degradation[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 231312.
Table A3
Modeling parameters
| 参数 | 描述 | 可信度 | 可调性 |
|---|---|---|---|
| 退化修正系数 | 用于将基准模型修正为退化性能模型的参数,由研究同类型的发动机文献[ | 4 | 可调:可以根据实际发动机型号调整 |
| 磨损量 | 发动机退化时产生的磨损量,由研究同类型的发动机文献[ | 4 | 可调:可以结合实际发动机运行情况更改 |
| 蠕变拟合参数 | 由实验值计算 | 5 | 计算值:和材料的蠕变行为有关 |
| 材料参数 | 由材料手册[ | 5 | 固定值:不可更改 |
| 涡轮盘平均应力 | 通过同类型涡轮盘ANSYS验证 | 5 | 计算值 |
| 叶片平均应力 | 通过同类型涡轮叶片ANSYS验证 | 5 | 计算值 |
| 摩擦系数 | 查阅文献[ | 4 | 可更改:可以结合实际发动机运行情况更改 |
| 升力系数CL | 文献[ | 4 | 可更改:可以结合实际发动机运行情况更改 |
| 阻力系数CD | 文献[ | 4 | 可更改:可以结合实际发动机运行情况更改 |
| 初始部件尺寸 | 给定值 | 5 | 固定值 |
| 设计间隙值 | 根据初始部件尺寸计算得到的 | 5 | 固定值 |
| [1] | 马双员, 张永峰. 航空发动机载荷谱综述[J]. 现代机械, 2011(5): 15-17, 35. |
| MA S Y, ZHANG Y F. Overview of aeroengine loading spectrum[J]. Modern Machinery, 2011(5): 15-17, 35 (in Chinese). | |
| [2] | 牛序铭, 赵旭, 王飞飞, 等. 基于损伤等效的航空发动机加速任务试车谱编制方法[J]. 推进技术, 2023, 44(2): 237-245. |
| NIU X M, ZHAO X, WANG F F, et al. Compiling method of aero-engine acceleration mission test spectrum based on damage equivalence[J]. Journal of Propulsion Technology, 2023, 44(2): 237-245 (in Chinese). | |
| [3] | 史海秋, 赵福星. 某型发动机承力机匣疲劳载荷谱研究[J]. 燃气涡轮试验与研究, 2005, 18(1): 41-44. |
| SHI H Q, ZHAO F X. Research on fatigue load spectra of an engine supporting-case[J]. Gas Turbine Experiment and Research, 2005, 18(1): 41-44 (in Chinese). | |
| [4] | ARNOLD S, KELLY P G. Recent turbine engine accelerated mission testing accomplishments at AEDC[C]∥ 2018 Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2018. |
| [5] | NAEEM M, SINGH R, PROBERT D. Implications of engine’s deterioration upon an aero-engine HP turbine blade’s thermal fatigue life[J]. International Journal of Fatigue, 2000, 22(2): 147-160. |
| [6] | RATH N, MISHRA R K, KUSHARI A. Aero-engine health monitoring, diagnostics and prognostics for condition-based maintenance: An overview[J]. International Journal of Turbo & Jet-Engines, 2024, 40(s1): s279-s292. |
| [7] | SUN J Z, YAN Z C, HAN Y, et al. Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator perspective[J]. Reliability Engineering & System Safety, 2023, 238: 109404. |
| [8] | 郭庆, 黄启廉, 陈金亮. 基于部件特性图优化的民航发动机性能退化建模[J/OL]. 北京航空航天大学学报, 2023: 1-14. (2023-08-22). . |
| GUO Q, HUANG Q L, CHEN J L. Performance degradation modeling of civil aviation engine based on component characteristic map optimization[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2023: 1-14. (2023-08-22). (in Chinese). | |
| [9] | WANG C J, TAO H Y, XU P Y, et al. The effect of changing the combustion chamber head structure on turbine blades under thermal shock test[J]. International Journal of Thermal Sciences, 2024, 205: 109260. |
| [10] | KHANI N, SEGOVIA C, NAVARATNE R, et al. Towards development of a diagnostic and prognostic tool for civil aero-engine component degradation[C]∥ASME 2012 Gas Turbine India Conference. New York: ASME, 2013: 803-814. |
| [11] | WANG C S, ZHU Z H, LU N Y, et al. A data-driven degradation prognostic strategy for aero-engine under various operational conditions[J]. Neurocomputing, 2021, 462: 195-207. |
| [12] | 李业波, 李秋红, 黄向华, 等. 航空发动机性能退化缓解控制技术[J]. 航空动力学报, 2012, 27(4): 930-936. |
| LI Y B, LI Q H, HUANG X H, et al. Performance deterioration mitigation control of aero-engine[J]. Journal of Aerospace Power, 2012, 27(4): 930-936 (in Chinese). | |
| [13] | LI Y F, CHEN Y, HU Z C, et al. Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models[J]. Reliability Engineering & System Safety, 2023, 229: 108869. |
| [14] | KURZ R, BRUN K. Degradation in gas turbine systems[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 70-77. |
| [15] | 肖俊峰, 伍赫, 高松, 等. 叶顶间隙对多级轴流压气机性能退化的影响[J]. 动力工程学报, 2024, 44(9): 1353-1360. |
| XIAO J F, WU H, GAO S, et al. Effects of blade tip clearance on performance degradation of the multi-stage axial compressor[J]. Journal of Chinese Society of Power Engineering, 2024, 44(9): 1353-1360 (in Chinese). | |
| [16] | ZHANG X D, XIONG Y W, HUANG X, et al. Dynamic modeling of rotary blade crack with regard to three-dimensional tip clearance[J]. Journal of Sound and Vibration, 2023, 544: 117414. |
| [17] | LATTIME S, STEINETZ B. Turbine engine clearance control systems: Current practices and future directions[C]∥38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. |
| [18] | 宋丙新, 侯朝山. 某型航空发动机HPT转子叶片叶尖间隙对涡轮流场及性能的影响分析[J]. 航空维修与工程, 2024(2): 27-30. |
| SONG B X, HOU C S. Analysis on the influence of clearance between HPT rotor blade tip and casing on flow field and performance for a certain aero-engine[J]. Aviation Maintenance & Engineering, 2024(2): 27-30 (in Chinese). | |
| [19] | TENG F, ZHANG X D, XIE S Y. Research on variation mechanism of three-dimensional blade tip clearance of aero-engine[C]∥2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Piscataway: IEEE Press, 2016: 1-6. |
| [20] | MA H, TAI X Y, HAN Q K, et al. A revised model for rubbing between rotating blade and elastic casing[J]. Journal of Sound and Vibration, 2015, 337: 301-320. |
| [21] | 杨梓佟. 基于热-固耦合的航空发动机碰摩动力学分析[D]. 天津: 中国民航大学, 2023. |
| YANG Z T. Aero-engine rubbing dynamics analysis based on thermo-structure coupling[D]. Tianjin: Civil Aviation University of China, 2023 (in Chinese). | |
| [22] | YANG Y, MAO J K, CHEN P T, et al. Prediction and analysis of transient turbine tip clearance using long short-term memory neural network[J]. Journal of Engineering for Gas Turbines and Power, 2024, 146(10): 101011. |
| [23] | SHENG H L, LIU T, ZHAO Y, et al. New model-based method for aero-engine turbine blade tip clearance measurement[J]. Chinese Journal of Aeronautics, 2023, 36(8): 128-147. |
| [24] | 何辉, 毛军逵, 刘方圆, 等. 考虑发动机性能退化的涡轮叶尖间隙预估方法研究[J]. 推进技术, 2020, 41(10): 2283-2291. |
| HE H, MAO J K, LIU F Y, et al. Method of turbine tip clearance prediction considering engine performance degradation[J]. Journal of Propulsion Technology, 2020, 41(10): 2283-2291 (in Chinese). | |
| [25] | WANG Z, WANG Y, WANG X, et al. A novel digital twin framework for aeroengine performance diagnosis[J]. Aerospace, 2023, 10(9):789. |
| [26] | YE M L, HE K, YAN X. Influence of wear damages on aerodynamic and heat transfer performance in squealer tip gap[J]. Applied Thermal Engineering, 2019, 159: 113976. |
| [27] | 徐田镇. 航空发动机退化状态参数估计与控制技术研究[D]. 南京: 南京航空航天大学, 2017. |
| XU T Z. Research on degradation aero-engine’s parameters estimation and control technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
| [28] | 郑玺龙. 基于战斗机飞行任务的涡扇发动机参数设计研究[D]. 南京: 南京航空航天大学, 2018. |
| ZHENG X L. Research of turbofan parameter design based on fighter flight missions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| [29] | VERBIST M L D. Gas path analysis for enhanced aero-engine condition monitoring and maintenance[D]. Delft: Delft University of Technology, 2017. |
| [30] | LITT J S, PARKER K I, CHATTERJEE S. Adaptive gas turbine engine control for deterioration compensation due to aging[C]∥16th International Symposium on Airbreathing Engines. 2003. |
| [31] | KRATZ J L, CHAPMAN J W. Active turbine tip clearance control trade space analysis of an advanced geared turbofan engine[C]∥2018 Joint Propulsion Conference. Reston: AIAA, 2018. |
| [32] | JAVIER K A. A reduced model for prediction of thermal and rotational effects on turbine tip clearance[R]. Washington, D.C.: NASA, 2023. |
| [33] | SALLEE G P. Performance deterioration based on existing (historical) data; JT9D jet engine diagnostics program: NASA-CR-135448[R]. Washington, D.C.: NASA, 1978. |
| [34] | 全昌彪, 廖明夫, 米栋, 等. 基于θ映射法的燃气涡轮叶片高温蠕变变形分析[J]. 燃气涡轮试验与研究, 2018, 31(6): 25-29, 55. |
| QUAN C B, LIAO M F, MI D, et al. High temperature creep deformation analysis of gas turbine blade based on θ-projection method[J]. Gas Turbine Experiment and Research, 2018, 31(6): 25-29, 55 (in Chinese). | |
| [35] | CHAPMAN J W, GUO T H, KRATZ J L, et al. Integrated turbine tip clearance and gas turbine engine simulation[C]∥52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
| [36] | NAEEM M. Implications of aero-engine deterioration for a military aircraft’s performance[D]. Cranfield: Cranfield University, 1999. |
| [37] | JAY A. TODD E S. Effect of steady flight loads on JT9D-7 performance deterioration: NASA-CR-135407 [R]. Washington, D.C.: NASA, 1978. |
| [38] | 聂志强. 短寿涡轮叶片和轮盘的强度分析与寿命预测[D]. 哈尔滨: 哈尔滨工程大学, 2023. |
| NIE Z Q. Strength analysis and life prediction of short-life turbine blades and disks[D]. Harbin: Harbin Engineering University, 2023 (in Chinese). | |
| [39] | 《中国航空材料手册》委员会. 中国航空材料手册. 第2卷, 变形高温合金 铸造高温合金[M]. 北京: 中国标准出版社, 2002. |
| Committee on Chinese Aeronautical Materials Manual.Manual of Chinese aeronautical materials. Volume 2, Deformation superalloys casting superalloys[M]. Beijing: Standards Press of China, 2002 (in Chinese). | |
| [40] | 陆山, 唐俊星, 赵明, 等. 航空发动机结构强度设计与分析[M]. 北京: 科学出版社, 2022. |
| LU S, TANG J X, ZHAO M, et al. Structural strength design and analysis of aircraft engines[M]. Beijing: Science Press, 2022 (in Chinese). | |
| [41] | SAKANE M, HIRANO A, HAMADA N, et al. Multiaxial inverse stress analysis for indentation creep[C]∥MATEC Web of Conferences. 2019. |
| [42] | ZHAO X, NIU X M, SONG Y D, et al. A novel damage constitutive model for creep deformation and damage evolution prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(3): 798-813. |
| [43] | 高丽敏, 王浩浩, 黄维娜, 等. 压气机叶片加工偏差的不确定性效应研究进展[J]. 航空学报, 2024, 45(19): 630386. |
| GAO L M, WANG H H, HUANG W N, et al. Research progress on uncertainty effect of compressor blade machining deviation[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630386 (in Chinese). |
| [1] | Weiguo ZHAO, Huanhuan QIANG, Xingguo LI. Effect of annular nozzle breadth on cavitation characteristics of high⁃speed inducer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128730-128730. |
| [2] | Yingzhi ZHANG, Huibin SUN, Cheng YAN, Meng LIU. A digital twin model for rotor tip clearance prediction considering interval uncertainty [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629775-629775. |
| [3] | Shicheng ZHAO, Rong JIANG, Haoxiang GONG, Lu ZHANG, Xuping LU, Haiyong ZHA, Yingdong SONG. Effect of film cooling holes on creep properties of nickel-based single crystal superalloy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 429737-429737. |
| [4] | Junyang YU, Wenguang FU, Peng SUN, Tao ZHANG, Chunxue WANG, Wei ZHAO. Design and stabilization mechanism of non-axisymmetric fans under inlet distortion conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129725-129725. |
| [5] | Jing CUI, Juan BAI, Shuxin NIU, Yifan WANG, Guangfeng YANG, Liwen WANG. Wear and corrosion resistance characteristics of ice suppression functional surface [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729288-729288. |
| [6] | Gang LI, Yu ZHANG, Si LI, Kunpeng ZHU. Modeling of high speed and high precision milling forces based on kinematics: Comprehensive modeling and experimental [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427261-427261. |
| [7] | Yanpeng SI, Lishuai SUN, Enwei YAN, Yujun LI, Jianjun JIANG. Compression creep model of dry fiber preform considering temperature effect [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 428513-428513. |
| [8] | Haiqin QIN, Jie ZHAO, Likun REN, Bianjiang LI. Aero-engine performance degradation evaluation based on improved L-SHADE algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227926-227926. |
| [9] | Chuanjun CAO, Tianyi LIU, Wei ZHU, Jinchun WANG. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 27824-027824. |
| [10] | NIU Guangyue, DUAN Fajie, ZHOU Qi, LIU Zhibo. A dynamic measurement method of blade tip clearance based on microwave phase difference ranging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625396-625396. |
| [11] | CAO Ming, HUANG Jinquan, ZHOU Jian, CHEN Xuefeng, LU Feng, WEI Fang. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: Diagnosis and prognosis of engine gas path, mechanical and FADEC [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625573-625573. |
| [12] | DUAN Fajie, NIU Guangyue, ZHOU Qi, FU Xiao, JIANG Jiajia. A review of online blade tip clearance measurement technologies for aeroengines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 626014-626014. |
| [13] | YU Tianxiang, ZHUANG Xinchen, SONG Bifeng, SUN Zhongchao. Integrated wear life prediction method of multiple joints in an aircraft linkage mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625113-625113. |
| [14] | CHEN Keming, TIAN Ruozhou, GUO Sujuan, WANG Runzi, ZHANG Chengcheng, CHEN Haofeng, ZHANG Xiancheng, TU Shandong. Creep fatigue life prediction of aero-engine turbine disc under cyclic thermal load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225290-225290. |
| [15] | YONG Yaowei, ZHAO Ruiheng, WANG Jun, ZHANG Shuai. Properties of nickel-based composite alloy coating on copper reinforced by laser cladding [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525604-525604. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

