Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (22): 428513-428513.doi: 10.7527/S1000-6893.2023.28513
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Yanpeng SI1, Lishuai SUN1, Enwei YAN1,2, Yujun LI1, Jianjun JIANG1()
Received:
2023-02-01
Revised:
2023-02-20
Accepted:
2023-03-15
Online:
2023-11-25
Published:
2023-03-21
Contact:
Jianjun JIANG
E-mail:jianjun@nwpu.edu.cn
Supported by:
CLC Number:
Yanpeng SI, Lishuai SUN, Enwei YAN, Yujun LI, Jianjun JIANG. Compression creep model of dry fiber preform considering temperature effect[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 428513-428513.
Table 3
Fitting parameters of creep curve of Findley model
实验条件 | a | b | c | R2 | RMSE |
---|---|---|---|---|---|
25 ℃-0.3 MPa | 0.385 0 | 0.200 2 | 0.015 51 | 0.721 3 | 0.004 782 |
25 ℃-0.5 MPa | 0.465 2 | 0.152 9 | 0.015 51 | 0.905 1 | 0.001 315 |
25 ℃-0.8 MPa | 0.536 0 | 0.118 7 | 0.015 51 | 0.911 2 | 0.001 299 |
40 ℃-0.3 MPa | 0.354 0 | 0.330 3 | 0.015 51 | 0.852 7 | 0.002 293 |
50 ℃-0.3 MPa | 0.291 1 | 0.492 4 | 0.015 51 | 0.901 5 | 0.003 692 |
60 ℃-0.3 MPa | 0.131 4 | 0.661 8 | 0.015 51 | 0.891 3 | 0.003 683 |
Table 4
Fitting parameters of creep curve of generalized Kelvin model
实验条件 | E0/MPa | η0/(MPa·s) | E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | η3/(MPa·s) | R2 | RMSE |
---|---|---|---|---|---|---|---|---|---|
25 ℃-0.3 MPa | 0.641 1 | 2.136 0 | 7.013 0 | 7.699 | 2.668 0 | 0.056 3 | 187 000 0 | 0.937 4 | 0.002 3 |
25 ℃-0.5 MPa | 1.162 0 | 0.002 8 | 7.055 0 | 332.900 | 4.411 0 | 0.044 6 | 332.900 | 0.758 5 | 0.002 1 |
25 ℃-0.8 MPa | 27.380 0 | 0.030 4 | 0.788 9 | 491.400 | 112.700 0 | 110.400 0 | 491.400 | 0.922 6 | 0.001 2 |
40 ℃-0.3 MPa | 2.375 0 | 0.101 8 | 15.550 0 | 268.500 | 0.970 7 | 0.000 9 | 268.500 | 0.854 9 | 0.002 3 |
50 ℃-0.3 MPa | 9.325 0 | 0.037 9 | 0.402 7 | 4.893 | 1 455.000 0 | 6.098 0 | 4.893 | 0.847 5 | 0.004 6 |
60 ℃-0.3 MPa | 2.539 0 | 0.005 3 | 3.127 0 | 78.900 | 0.526 4 | 0.044 0 | 78.900 | 0.919 7 | 0.003 2 |
Table 5
Fitting parameters of creep curve of Burgers model
实验条件 | E0/MPa | η0/(MPa·s) | E1/MPa | η1/(MPa·s) | R2 | RMSE |
---|---|---|---|---|---|---|
25 ℃-0.3 MPa | 1.158 0 | 0.040 50 | 0.923 4 | 107.40 | 0.971 7 | 0.001 5 |
25 ℃-0.5 MPa | 1.098 0 | 0.054 04 | 1.155 0 | 402.30 | 0.981 9 | 0.000 6 |
25 ℃-0.8 MPa | 2.424 0 | 0.036 90 | 2.480 0 | 431.30 | 0.950 2 | 0.001 0 |
40 ℃-0.3 MPa | 0.948 0 | 0.039 63 | 0.679 3 | 97.65 | 0.972 3 | 0.000 9 |
50 ℃-0.3 MPa | 8.678 0 | 0.040 80 | 0.403 7 | 63.30 | 0.872 0 | 0.004 2 |
60 ℃-0.3 MPa | 0.437 7 | 0.095 20 | 2.896 0 | 69.01 | 0.977 5 | 0.001 7 |
Table 6
Fitting parameters of creep curve of two⁃parameters model
实验条件 | a | b | R2 | RMSE |
---|---|---|---|---|
25 ℃-0.3 MPa | 0.587 0 | 0.011 5 | 0.766 8 | 0.004 4 |
25 ℃-0.5 MPa | 0.617 9 | 0.005 3 | 0.775 3 | 0.002 0 |
25 ℃-0.8 MPa | 0.654 4 | 0.005 0 | 0.662 7 | 0.002 5 |
40 ℃-0.3 MPa | 0.732 1 | 0.006 7 | 0.854 3 | 0.002 3 |
50 ℃-0.3 MPa | 0.783 2 | 0.011 9 | 0.729 0 | 0.006 1 |
60 ℃-0.3 MPa | 0.793 2 | 0.012 9 | 0.891 9 | 0.003 7 |
Table 7
Fitting parameters of creep/recovery curve of generalized Kelvin model
实验条件 | E0/MPa | η0/(MPa·s) | E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | η3/(MPa·s) | R2 | RMSE |
---|---|---|---|---|---|---|---|---|---|
25 ℃-0.3 MPa | 0.540 1 | 0.140 3 | 1.889 0 | 0.865 9 | 0.067 6 | 0.139 0 | 0.457 7 | 0.998 0 | 0.003 7 |
25 ℃-0.5 MPa | 0.839 4 | 0.112 6 | 0.200 0 | 0.215 7 | 0.641 6 | 0.136 3 | 1.334 0 | 0.922 5 | 0.027 9 |
25 ℃-0.8 MPa | 1.269 0 | 0.109 6 | 0.095 8 | 0.517 8 | 1.185 0 | 1.635 0 | 1.326 0 | 0.999 5 | 0.002 2 |
40 ℃-0.3 MPa | 0.442 0 | 0.113 7 | 0.468 9 | 0.021 4 | 0.136 3 | 0.113 7 | 1.103 0 | 0.807 1 | 0.028 0 |
50 ℃-0.3 MPa | 0.420 3 | 0.150 8 | 0.079 6 | 0.046 7 | 1.275 0 | 0.152 4 | 0.327 4 | 0.805 3 | 0.020 1 |
60 ℃-0.3 MPa | 0.577 7 | 0.198 0 | 0.798 7 | 0.032 7 | 0.933 8 | 0.199 6 | 1.110 0 | 0.788 4 | 0.016 2 |
Table 8
Fitting parameters of creep/recovery curve of Burgers model
实验条件 | E0/MPa | η0/(MPa·s) | E1/MPa | η1/(MPa·s) | R2 | RMSE |
---|---|---|---|---|---|---|
25 ℃-0.3 MPa | 0.580 8 | 0.100 3 | 4.112 0 | 797 700 0 | 0.997 9 | 0.003 7 |
25 ℃-0.5 MPa | 0.896 0 | 0.079 4 | 8.227 0 | 26 690 | 0.999 3 | 0.002 3 |
25 ℃-0.8 MPa | 1.333 0 | 0.080 9 | 14.510 0 | 10 110 | 0.999 8 | 0.002 3 |
40 ℃-0.3 MPa | 2.918 0 | 0.037 1 | 0.454 6 | 1 172 | 0.973 4 | 0.010 4 |
50 ℃-0.3 MPa | 2.987 0 | 0.042 4 | 0.440 0 | 1 082 | 0.973 5 | 0.007 4 |
60 ℃-0.3 MPa | 3.074 0 | 0.048 0 | 0.432 9 | 1 004 | 0.971 2 | 0.006 0 |
Table 9
Fitting parameters of creep/recovery curve of Findley model
实验条件 | a | b | c | R2 | RMSE |
---|---|---|---|---|---|
25 ℃-0.3 MPa | 0.504 4 | 0.478 0 | 0.015 5 | 0.970 8 | 0.013 5 |
25 ℃-0.5 MPa | 0.783 8 | 0.261 6 | 0.015 5 | 0.963 6 | 0.015 5 |
25 ℃-0.8 MPa | 0.805 6 | 0.219 1 | 0.015 5 | 0.985 4 | 0.011 6 |
40 ℃-0.3 MPa | 0.419 0 | 0.343 6 | 0.015 5 | 0.941 2 | 0.015 2 |
50 ℃-0.3 MPa | 0.231 3 | 0.552 9 | 0.015 5 | 0.927 5 | 0.012 3 |
60 ℃-0.3 MPa | 0.071 9 | 0.722 4 | 0.015 5 | 0.899 4 | 0.011 2 |
Table 10
Fitting parameters of creep/recovery curve of tow⁃parameter model
实验条件 | a | b | R2 | RMSE |
---|---|---|---|---|
25 ℃-0.3 MPa | 0.587 6 | 0.012 5 | 0.995 3 | 0.005 6 |
25 ℃-0.5 MPa | 0.618 1 | 0.006 5 | 0.998 0 | 0.003 8 |
25 ℃-0.8 MPa | 0.654 7 | 0.005 1 | 0.998 8 | 0.003 5 |
40 ℃-0.3 MPa | 0.762 6 | 0.007 0 | 0.948 6 | 0.014 5 |
50 ℃-0.3 MPa | 0.784 2 | 0.010 9 | 0.935 9 | 0.011 6 |
60 ℃-0.3 MPa | 0.794 3 | 0.014 3 | 0.903 6 | 0.011 0 |
1 | 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. |
GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797 (in Chinese). | |
2 | 吴凯文, 杨晋, 李龙, 等. 不同经编织物对预成型体定型工艺性及渗透特性的影响[J]. 航空学报, 2017, 38(10):235-246. |
WU K W, YANG J, LI L, et al. Influence of different warp knitted fabrics on processability and permeability of preform[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 235-246 (in Chinese). | |
3 | YUN M, CARELLA T, SIMACEK P, et al. Stochastic modeling of through the thickness permeability variation in a fabric and its effect on void formation during vacuum assisted resin transfer molding[J]. Composites Science and Technology, 2017, 149: 100-107. |
4 | AZIZ A R, ALI M A, ZENG X, et al. Transverse permeability of dry fiber preforms manufactured by automated fiber placement[J]. Composites Science and Technology, 2017, 152: 57-67. |
5 | LUKASZEWICZ D H J A, WARD C, POTTER K D. The engineering aspects of automated prepreg layup: History, present and future[J]. Composites Part B: Engineering, 2012, 43(3): 997-1009. |
6 | 杭产. 空客持续推进“明日之翼”项目[N].中国航空报,2020-02-14. |
HANG C. Airbus continuously promotes the “Wings of Tomorrow” project [N]. China Aviation News, 2020-02-14 (in Chinese). | |
7 | CROFT K, LESSARD L, PASINI D, et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 484-491. |
8 | BICKERTON S, BUNTAIN M J, SOMASHEKAR A A. The viscoelastic compression behavior of liquid composite molding preforms[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(5): 431-444. |
9 | BUBLITZ D, COLIN D, DRECHSLER K. Implementation of a viscoelastic material model to predict the compaction response of dry carbon fiber preforms[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106718. |
10 | WERLEN V, RYTKA C, MICHAUD V. A numerical approach to characterize the viscoelastic behaviour of fibre beds and to evaluate the influence of strain deviations on viscoelastic parameter extraction[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106315. |
11 | DANZI M, SCHNEEBERGER C, ERMANNI P. A model for the time-dependent compaction response of woven fiber textiles[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 180-188. |
12 | CELAURO C, FECAROTTI C, PIRROTTA A, et al. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures[J]. Construction and Building Materials, 2012, 36: 458-466. |
13 | ZHANG Y Y, SUN Z, LI Y Q, et al. Tensile creep behavior of short-carbon-fiber reinforced polyetherimide composites[J]. Composites Part B: Engineering, 2021, 212: 108717. |
14 | YANG J L, ZHANG Z, SCHLARB A K, et al. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance[J]. Polymer, 2006, 47(19): 6745-6758. |
15 | 杜虎虎, 王伟宏, 王海刚, 等. 木纤维含量对木塑复合材料蠕变特性的影响[J]. 建筑材料学报, 2015, 18(2):333-339. |
DU H H, WANG W H, WANG H G, et al. Influence of wood fiber content on the creep behavior of wood fiber-plastic composite[J]. Journal of Building Materials, 2015, 18(2):333-339 (in Chinese). | |
16 | LI R, LENG Z, PARTL M N, et al. Characterization and modelling of creep and recovery behaviour of waterborne epoxy resin modified bitumen emulsion[J]. Materials and Structures, 2021, 54(1): 1-12. |
17 | KELLY P A. A viscoelastic model for the compaction of fibrous materials[J]. Journal of the Textile Institute, 2011, 102(8): 689-699. |
18 | MARCOVICH N E, VILLAR M A. Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites[J]. Journal of Applied Polymer Science, 2003, 90(10): 2775-2784. |
19 | CHAE S H, ZHAO J H, EDWARDS D R, et al. Characterization of the viscoelasticity of molding compounds in the time domain[J].Journal of Electronic Materials, 2010, 39(4): 419-425. |
20 | HOUSHYAR S, SHANKS R A, HODZIC A. Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites[J]. Polymer Testing, 2005, 24(2): 257-264. |
21 | NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete[M]. London: Construction Press, 1983. |
22 | LAUKKANEN O V, WINTER H H. Strain accumulation in bituminous binders under repeated creep-recovery loading predicted from small-amplitude oscillatory shear (SAOS) experiments[J]. Mechanics of Time-Dependent Materials, 2018, 22(4): 499-518. |
23 | 梅生启, 唐广, 杨斌, 等. 基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析[J]. 复合材料学报, 2020, 37(8): 2055-2064. |
MEI S Q, TANG G, YANG B, et al. Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2055-2064 (in Chinese). |
[1] | CHEN Keming, TIAN Ruozhou, GUO Sujuan, WANG Runzi, ZHANG Chengcheng, CHEN Haofeng, ZHANG Xiancheng, TU Shandong. Creep fatigue life prediction of aero-engine turbine disc under cyclic thermal load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225290-225290. |
[2] | LEI Shiying, SUN Jianzhong, LIU He. Cumulative damage index model and service reliability evaluation of turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225064-225064. |
[3] | WANG Changyu, XU Kejun, QIN Haiqin, MA Zhongyuan, XIE Jing, XIE Zhenbo. A generalized Bodner-Partom viscoplastic constitutive model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 426009-426009. |
[4] | XU Kejun, XIAO Yang, QIN Haiqin, JIA Mingming. Fatigue-creep life prediction based on cyclic strain characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524109-524109. |
[5] | WU Zhihui, NIU Gongjie, QIAN Jianping, LIU Rongzhong. Thermodynamics-based damage constitutive model and its application to damage analysis for HTPB/AP composite base bleed grain [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 223855-223855. |
[6] | YUAN Jingwei, LI Zhuo, TANG Haibo, CHENG Xu. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524390-524390. |
[7] | HU Xiaoan, SHI Duoqi, YANG Xiaoguang, YU Huichen. TMF constitutive and life modeling: From smooth specimen to turbine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 422494-422494. |
[8] | YAO Ping, WANG Runzi, GUO Sujuan, ZHANG Xiancheng. Finite element simulations of creep-fatigue behavior and life assessment of GH4169 alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 422193-422193. |
[9] | ZHAO Tian, YANG Zhichun, LIU Hao, Kassem MOHAMMED, WANG Wei. Hysteresis and creep nonlinearities modeling and adaptive hybrid compensation control of piezoelectric stack actuators [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 222308-222308. |
[10] | FAN Xinggui, XU Jinsheng, CHEN Xiong, DU Hongying, LI Yingkun, ZHANG Zhongshui. A visco-hyperelastic constitutive model for EPDM soft PSD of dual-pulse motors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(11): 222299-222307. |
[11] | WANG Hongli, XU Jinsheng, CHEN Xiong, ZHOU Changsheng. Viscoelastic-viscoplastic constitutive model for modified double base propellant [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 220505-220505. |
[12] | KONG Jinxing, CHEN Hui, HE Ning, LI Liang, JIANG Feng. Dynamic Mechanical Property Tests and Constitutive Model of Pure Iron Material [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(7): 2063-2071. |
[13] | ZHONG Jianlin, MA Dawei, LI Shijun, REN Jie, HU Jianguo. Axisymmetric Plain Strain Analysis of Stress and Deformation Mode for Foam/Rubber Adapter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3324-3330. |
[14] | WU Chunbo, CHEN Xiuhua, YU Yin, WANG Hai. Nonlinear Stiffness Analysis of Thick Composite Laminate Under Biaxial Load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(7): 1236-1244. |
[15] | LIU Baosheng, LANG Lihui, YANG Xiying, DU Pingmei, CAI Gaocan. A Rate Dependent Constitutive Model Based on the Microstructure Evolution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(7): 1329-1335. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341