[1] YAN H, ZHANG J, ZHANG P L, et al. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold[J]. Surface and Coatings Technology, 2013, 232:362-369. [2] LI M Y, CHAO M J, LIANG E J, et al. Improving wear resistance of pure copper by laser surface modification[J]. Applied Surface Science, 2011, 258(4):1599-1604. [3] TAZEGUL O, DYLMISHI V, CIMENOGLU H. Copper matrix composite coatings produced by cold spraying process for electrical applications[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3):344-350. [4] LIU Y, XU T H, LIU Y, et al. Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser[J]. Journal of Materials Research and Technology, 2020, 9(4):8283-8288. [5] 闻光远. 火箭发动机内衬CuAgZr合金时效析出行为及力学性能[D]. 哈尔滨:哈尔滨工业大学, 2016:1-17. WEN G Y. The ageing behavior and mechanical properties of CuAgZr alloy for combustion chamber liner in rocket engine[D]. Harbin:Harbin Institute of Technology, 2016:1-17(in Chinese). [6] 姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5):84-92. JIANG Y X, LOU H F, XIE H F, et al. Development status and prospects of advanced copper alloy[J]. Strategic Study of CAE, 2020, 22(5):84-92(in Chinese). [7] SOBOLEV V V, GUILEMANY J M, CALERO J A. Heat transfer during the formation of an HVOF sprayed WC-Co coating on a copper substrate[J]. Journal of Materials Processing Technology, 1999, 96(1-3):1-8. [8] CHEN S Y, LIANG J, LIU C S, et al. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser[J]. Applied Surface Science, 2011, 258(4):1443-1450. [9] CALLEJA A, TABERNERO I, FERNÁNDEZ A, et al. Improvement of strategies and parameters for multi-axis laser cladding operations[J]. Optics and Lasers in Engineering, 2014, 56:113-120. [10] LV X, ZHAN Z J, CAO H Y, et al. Microstructure and properties of the laser cladded in situ ZrB2-ZrC/Cu composite coatings on copper substrate[J]. Surface and Coatings Technology, 2020, 396:125937. [11] YIN J, WANG D Z, MENG L, et al. High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on copper substrate by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 325:120-126. [12] LIU Y, LIU Y, GAO Y L, et al. Microstructure and properties of Ni-Co composite cladding coating on mould copper plate[J]. Materials, 2019, 12(17):2782. [13] PEREIRA J C, ZAMBRANO J C, RAYÓN E, et al. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding:The influence of the Ni, Co and Al content[J]. Surface and Coatings Technology, 2018, 338:22-31. [14] NG K W, MAN H C, CHENG F T, et al. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts[J]. Applied Surface Science, 2007, 253(14):6236-6241. [15] 徐建林, 杨波, 高威, 等. 铝青铜表面激光熔覆层组织与性能研究[J]. 航空材料学报, 2009, 29(1):63-67. XU J L, YANG B, GAO W, et al. Microstructure and performance of laser cladding on surface of aluminum bronze[J]. Journal of Aeronautical Materials, 2009, 29(1):63-67(in Chinese). [16] DUAN X X, GAO S Y, DONG Q, et al. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding[J]. Surface and Coatings Technology, 2016, 291:230-238. [17] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5):473-478. WANG H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):473-478(in Chinese). [18] TRAN V N, YANG S, PHUNG T A. Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in situ laser cladding[J]. Optics & Laser Technology, 2018, 108:480-486. [19] LI M, HUANG J, ZHU Y Y, et al. Effect of heat input on the microstructure of in situ synthesized TiN-TiB/Ti based composite coating by laser cladding[J]. Surface and Coatings Technology, 2012, 206(19-20):4021-4026. [20] PIERSON H O. Carbides of group IV[M]//Handbook of Refractory Carbides and Nitrides. Amsterdam:Elsevier, 1996:55-80. [21] 雍耀维, 张翔, 傅卫, 等. 激光熔覆原位制备ZrC颗粒增强涂层的行为特征[J]. 稀有金属材料与工程, 2018, 47(5):1625-1630. YONG Y W, ZHANG X, FU W, et al. Behavior characteristics of in situ formed ZrC particle reinforcement composite coating by laser cladding[J]. Rare Metal Materials and Engineering, 2018, 47(5):1625-1630(in Chinese). [22] XU J Y, ZOU B L, ZHAO S M, et al. Fabrication and properties of ZrC-ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders[J]. Ceramics International, 2014, 40(10):15537-15544. [23] YONG Y W, FU W, DENG Q L, et al. Mechanism of Zr in in situ-synthesized particle reinforced composite coatings by laser cladding[J]. Rare Metals, 2017, 36(12):934-941. [24] 张顺, 范景莲, 成会朝, 等. ZrC对W合金性能与组织结构的影响[J]. 稀有金属材料与工程, 2013, 42(7):1429-1432. ZHANG S, FAN J L, CHENG H C, et al. Influence of ZrC addition on properties and microstructure of W alloys[J]. Rare Metal Materials and Engineering, 2013, 42(7):1429-1432(in Chinese). [25] DULEY W W. Materials processing[M]//Laser Processing and Analysis of Materials. Boston:Springer US, 1983:69-176. [26] HEMMATI I, HUIZENGA R M, OCELÍK V, et al. Microstructural design of hardfacing Ni-Cr-B-Si-C alloys[J]. Acta Materialia, 2013, 61(16):6061-6070. [27] WATANABE Y, SHIBUTA Y, SUZUKI T. A molecular dynamics study of thermodynamic and kinetic properties of solid-liquid interface for bcc iron[J]. ISIJ International, 2010, 50(8):1158-1164. [28] YONG Y W, FU W, ZHANG X, et al. In-situ synthesis of WC/TaC reinforced nickel-based composite alloy coating by laser cladding[J]. Rare Metal Materials and Engineering, 2017, 46(11):3176-3181. [29] 雍耀维. 激光熔覆镍基复合涂层工艺和性能的试验研究[D]. 上海:上海交通大学, 2018:103-108. YONG Y W. Study on process and performance of laser cladding nickel based composite coatings[D]. Shanghai:Shanghai Jiao Tong University, 2018:103-108(in Chinese). [30] ZHANG T Q, WANG Y J, ZHOU Y, et al. Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites[J]. Materials Science and Engineering:A, 2010, 527(16-17):4021-4027. [31] SUNDARAMOORTHY R, TONG S X, PAREKH D, et al. Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding[J]. Wear, 2017, 376-377:1720-1727. [32] KIM J H, PARK C, HA D, et al. WC-toughened (Zr, W)C solid solution carbides[J]. Journal of Alloys and Compounds, 2015, 637:183-187. [33] 吴军, 朱冬冬, 杨日初, 等. 45钢轴面激光熔覆Ni60AA涂层工艺参数优化及摩擦磨损性能研究[J]. 激光与光电子学进展, 2021, 58(11):304-314. WU J, ZHU D D, YANG R C, et al. Parameters optimization and friction and wear properties for laser cladding Ni60AA coating on 45 steel shaft surface[J]. Laser & Optoelectronics Progress, 2021, 58(11):304-314(in Chinese). [34] 傅卫. 铜结晶器激光熔覆双梯度涂层制备及热力行为研究[D]. 哈尔滨:哈尔滨工业大学, 2018:102-105. FU W. Investigation on preparation and thermo-mechanical behavior of laser cladding double gradient coating for copper crystallizer[D]. Harbin:Harbin Institute of Technology, 2018:102-105(in Chinese). [35] 曹四龙, 王凌倩, 周健松. 激光熔覆NiCrMo和NiCrBSi涂层的微观组织及摩擦学性能研究[J]. 材料保护, 2021, 54(3):1-8, 33. CAO S L, WANG L Q, ZHOU J S. Microstructure and tribological properties of laser cladding NiCrMo and NiCrBSi alloy coatings[J]. Materials Protection, 2021, 54(3):1-8, 33(in Chinese). [36] 李剑锋, 朱真才, 彭玉兴, 沈刚, 李翔. 原位合成M23C6-WC双相碳化物协同增强激光熔覆层摩擦磨损行为的研究[J]. 摩擦学学报, 2021, 41(6):843-857. LI J F, ZHU Z C, PENG Y X, et al. Friction and wear BEHAVIOR of in situ synthesized M23C6-WC dual-carbides synergistically reinforced laser cladding coatings[J]. Tribology, 2021, 41(6):843-857. |