Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (13): 629508-629508.doi: 10.7527/S1000-6893.2023.29508
• special column • Previous Articles Next Articles
Yunlong ZHOU1, Yi MA1, Yingchun GUAN1,2()
Received:
2023-08-31
Revised:
2023-09-27
Accepted:
2023-10-20
Online:
2024-07-15
Published:
2023-11-07
Contact:
Yingchun GUAN
E-mail:guanyingchun@buaa.edu.cn
Supported by:
CLC Number:
Yunlong ZHOU, Yi MA, Yingchun GUAN. Research progress on laser selective melting technology for high-performance manufacturing of aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629508-629508.
Table 1
Summary of factors affecting overlap region of multi-beam SLM forming samples
影响因素 | 成形材料 | 调控优势 | 应用限制 | ||
---|---|---|---|---|---|
拼接方式 | 顺序拼接 | Ti6Al4V[ | ● 可消除拼接表面的明显起伏 ● 可减少内部孔洞等缺陷的数量 | ● 无法调控抗拉强度与显微硬度 | |
重熔拼接 | TA15[ | ● 可减小晶粒尺寸 ● 可提高显微硬度 | ● 表面成形不连续,易产生起伏 ● 会降低成形尺寸精度 | ||
Ti6Al4V[ | ● 易产生表面起伏现象 ● 会降低成形尺寸精度 ● 存在较多的孔洞缺陷 ● 拼接区域致密度不高 | ||||
交错拼接 | TA15[ | ● 表面成形连续,无起伏现象 ● 成形组织均匀性好 ● 有利于后续优化处理 | ● 无法调控样件的显微硬度 | ||
Ti6Al4V[ | ● 表面无起伏现象 ● 可减少熔合不良等缺陷 ● 可改善尺寸精度和冶金质量 | ● 拼接区域致密度不高 | |||
拼接区域宽度 | AlSi10Mg[ | ● 可调控抗拉强度 | ● 拼接区域的抗拉强度低于孤立区域 | ||
Ti6Al4V[ | ● 可调控抗拉强度与伸长率 | ● 有益的宽度范围有限 | |||
TA15[ | ● 可调控伸长率 | ● 会增加产生飞溅的可能性 | |||
激光工艺参数 | 激光功率 | TA15[ | ● 可调控熔池形貌 ● 可减少孔隙缺陷数量 ● 可调控水平方向尺寸误差 | ● 功率通常较小,否则会导致表面起伏现象,产生缺陷,影响致密度 | |
扫描速度 | TA15[ | ● 可调控致密度 ● 可调控水平方向尺寸误差 | |||
扫描路径 | 316L[ | ● 可减少飞溅物、孔隙等缺陷数量,提高致密度 ● 可细化晶粒尺寸 ● 可降低残余应力 ● 改善搭接区域的成形质量 ● 有利于增加维氏硬度与拉伸强度 | ● 过长的复杂路径需要进行分区扫描 | ||
激光延迟参数 | 316L[ | ● 可调控孔隙缺陷 ● 可优化表面起伏现象,提高表面质量 | ● 无法同时消除表面起伏和孔隙缺陷,只能在低孔隙率和高表面质量之间权衡 | ||
扫描顺序 | 316L[ | ● 显著提升温度均匀性 ● 减少热应力引起的变形 | ● 生产效率有损失 | ||
扫描方向 | Ti3Al6V[ | ● 可调控残余应力,改变平均等效应力 | |||
光束偏置 | 316L[ | ● 可减少残余应力 ● 可降低表面粗糙度 ● 可减少孔隙缺陷与层间缺陷 ● 可改善机械性能和润湿特性 | ● 足够大的功率下,拼接区域表面才能比孤立区域光滑 | ||
风场优化 | 气流方向 | 316L[ | ● 可控制晶体织构 ● 可影响熔池深度 | ● 需与激光扫描方向建立联系 | |
气体选择 | 316L[ | ● 可去除飞溅 | |||
气体流速 |
Table 2
Comparison and application of SLM forming process assisted by different energy fields[10,61-68]
能场 | 优势 | 局限性 | 具体应用 | ||||||
---|---|---|---|---|---|---|---|---|---|
材料 | 粉末尺寸/μm | 激光功率/W | 扫描速度/(mm·s-1) | 场参数 | 文献 | ||||
磁场 | ● 非接触式 ● 快速响应 ● 磁场易产生 | ● 存在材料限制:要求成形材料具有磁性或电学特性 | CP-Ti | 47 | 175 | 1 250 | 磁场强度 | 0.1 T | [ |
AlSi10Mg | 56 | 400 | 930 | 0.12 T | [ | ||||
Al-Si合金 | Al:42 Si:16 | 320 | 500 | 样件底部0.175 T 样件顶部0.085 T | [ | ||||
GH3536 | 36.7 | 250 | 500 | 0.3 T | [ | ||||
IN738 | 10~30 | 100 | 400 | 0.07 T | [ | ||||
声场 | ● 非接触式 ● 无材料限制 ● 可定制仿生微结构 ● 沉积速度快 | ● 控制精度低 ● 大件或复杂件成形困难 | Ti6Al4V Al-Cu合金 Fe86.3Si5.9B3.2Cr4.6 | 68 15~45 10~40 | 400 300 100 | 50 1 000 400 | 超声频率 | 20 kHz 17.5 kHz 20 kHz | [ [ [ |
热场 | ● 热场产生方式多样 ● 缩短成形件生产周期 | ● 热控制难度大 ● 操作精度低 | W W-Cu | 15~45 | 375 400 | 210~840 | 温度 | 600 ℃ 800 ℃ 1 000 ℃ | [ |
Table 3
Characteristics and applications of different types of signals in online monitoring SLM process[11,95-118]
信号类型 | 优势 | 局限性 | 监测对象 |
---|---|---|---|
光信号 | ● 远程可视化监测 ● 技术成熟全面 ● 信息丰富直观 ● 传感器设备价廉多样 ● 抗干扰性能强 | ● 空间分辨率差,对成形区域体积行为不敏感 ● 对信号传感器和光源的相对位置要求高 | ● 铺粉缺陷[ ● 飞溅行为[ ● 孔隙缺陷[ ● 熔池特征[ |
热信号 | ● 实际应用广泛 ● 能同时监测多个成形区域 ● 对热行为敏感,可获得温度与尺寸信息 | ● 缺乏实时控制 ● 设备成本相对较高 ● 监测效果受材料辐射率的干扰 ● 部分传感器需要接触待测样件 ● 缺陷检测的准确性和灵敏度不足 | ● 熔池特性[ ● 热历史[ ● 孔隙缺陷[ |
声信号 | ● 无需接触样件 ● 信号传感器成本低 ● 可高效准确定位缺陷 ● 空间分辨率高,对成型区域体积行为敏感 ● 信号检测简单,数据采集量小,便于实时处理 | ● 信号表现出高度的复杂性与非线性 ● 受零件几何形状和高信噪比的限制 ● 传感器的相对位置、角度等对信号影响较大 | ● 飞溅行为[ ● 孔隙缺陷[ ● 裂纹缺陷[ |
力信号 | 目前研究很少,需要进一步研究 | ● 残余应力[ | |
振动信号 | 目前研究很少,需要进一步研究 | ● 孔洞裂缝[ |
Table 4
Summary of SLM prediction effect based on machine learning[12,144-166]
预测类型 | 机器学习方法/模型 | 输入端 | 材料体系 | 优势/贡献 | 挑战/展望 | 文献 | |
---|---|---|---|---|---|---|---|
组织缺陷 | 晶粒尺寸/形貌 | 3D cellular automaton finite volume | ● 激光功率 ● 扫描速度 | IN718 | 建立了工艺参数与晶粒结构间的关系,预测与实验结果定性一致 | ● 微观结构机理的深入 ● 模型与理论的融合 | [ |
缺陷:结构、形貌、分布、数量、形成 | EfficientNet B7+ mask R-CNN | ● 图像 ● 标签 | FeSiCr | 高准确率(92.72%) 高效(0.219 7 s/单图像计算) | ● 高效模型的开发 ● 训练数据集的扩展 ● 微观结构图像的扩展 ● 模型的多场景应用 ● 缺陷空间结构的精准预测 | [ | |
DLCM | ● 图像 | 细节信息精确 | [ | ||||
FFNNs | ● 构建方向 ● 激光功率 ● 扫描速度 ● 舱口距离 ● 层厚度 ● 粉末尺寸 | AlSi10Mg+Ti6Al4V | 高预测精度 | [ | |||
HDGPN | ● 激光功率 ● 扫描速度 | 316L | 复杂微观结构图像的高质量深度表达,孔隙形态的可靠预测 | [ | |||
DNN | ● 激光功率 | SUS 316L | 低分类失败率(<1.1%) 多线程高效处理 | [ | |||
性能 | 密度 | BN | ● 激光功率 ● 扫描速度 ● 层厚度 ● 舱口间距 | 316L | 高预测精度 | ● 输入参数(工艺与材料端)的扩展 ● 训练数据集的扩展 ● 模型的多场景应用 ● 先进算法和技术的集成 | [ |
XGBoost | ● 激光功率 ● 扫描速度 ● 舱口距离 ● 层厚度 | Ti6Al4V | 高精度 高通用性 高实用性 | [ | |||
GPR | ● 激光功率 ● 扫描速度 ● 舱口间距 ● 层厚度 ● 能量密度 | Ti6Al4V | 高预测精度(MAE=0.27%) 高预测灵巧性 | [ | |||
MLPM | ● 激光功率 ● 扫描速度 ● 舱口距离 | Al50Si | 高预测精度(R2=0.931 6,RMSE=1.199 4×10-4) | [ | |||
NN + PCA + SVM | ● 扫描速度 ● 扫描间距 ● 扫描次数 | Al10Si0.35Mg | 高效扫描策略的建立,实现微观结构精细化,表面粗糙度光滑化,材料高密度化 | [ | |||
表面粗糙度 | Gaussian processes | ● 激光功率 ● 扫描速度 ● 舱口间距 | 316L-Cu | 建立了成分梯度区工艺-性能关系 | ● 训练数据集的优化 ● 深层次机理(工艺-材料)的挖掘 ● 模型的算法优化 ● 模型的多场景应用 | [ | |
RSM+MLP+ANFIS+SVR+RFR+GPR+EM | ● 激光功率 ● 扫描速度 ● 舱口间距 ● 层厚度 | 316L不锈钢 | RSM高准确率(>90%) | [ | |||
GPR+NN+SVR+ET+RT+MLR | ● 激光功率 ● 扫描速度 ● 舱口间距 ● 层厚度 ● 能量密度 ● 粉末尺寸 | Ti6Al4V | GPR高预测精度(RMSE=0.51) | [ | |||
ANN | ● 激光功率 ● 扫描速度 ● 舱口间距 ● 层厚度 | Ti6Al4V | 高预测精度(R2=0.988) | [ | |||
显微硬度/磨损率 | GBR+XGBR+AdaBoost | ● 激光功率 ● 扫描速度 ● 层厚度 ● 舱口间距 ● 材料密度 | 合金+金属基复合材料 | 高预测精度(R2=0.964 1) | ● 训练数据集的优化 ● 附加特征(元素分布等信息)的算法融入 ● 预测模型的优化 ● 模型的多场景应用 | [ | |
ANN+ Hyperparameter Optimization | ● 激光功率 ● 扫描速度 ● 舱口间距 | SS 316L | 高预测精度(RMSE=0.057 8)低成本预处理简化 | [ | |||
应力/应变性能 | ANN | ● 退火温度 ● 保温时间 | Ti6Al4V | 高YS、UTS性能预测精确(>96.6%) | ● 模型的多场景应用 ● 训练数据集的优化 ● 先进算法和技术的集成 | [ | |
Random forest + Image analysis | ● 退火温度 ● 保温时间 ● 冷却速率 | Ti6Al4V | 高预测精度(98%) | [ | |||
ANN | ● 孔隙率 ● 拉伸参数 | AlSi10Mg | 用于预测具有复杂非均相微结构的工程材料微观结构-性能关系,具有高预测精度(MSE<0.1) | [ | |||
疲劳性能 | FFNN+PINN+BLFFNN | ● 激光参数 ● 热处理 ● 表面处理 | Ti6Al4V | 高效率 高预测精度 | ● 训练数据集的扩展 ● 材料应用的拓展 ● 原始数据的质量优化 ● 物理知识背景下的特征降维 | [ | |
ANN+RFR+SVR | ● 缺陷尺度 ● 缺陷位置 ● 缺陷形状 | Ti6Al4V | ANN高预测精度(R2=0.944) | [ | |||
BP+MCs | ● 缺陷尺寸 ● 缺陷位置 ● 缺陷深度 | Ti6Al4V | 高预测精度(R2=0.98) 学习快速高效 | [ | |||
ANN+SVR+RF | ● 层厚度 ● 应力比 ● 应力幅值 ● 缺陷状态 | AlSi10Mg | RF具有最优预测精度 | [ |
1 | TAN C L, WENG F, SUI S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804. |
2 | GUO N N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243. |
3 | XU Z Y, WANG Y D. Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances[J]. Chinese Journal of Aeronautics, 2021, 34(2): 28-53. |
4 | 陈超越, 王江, 王瑞鑫, 等. 航空发动机及燃气轮机用关键材料的激光增材制造研究进展[J]. 科技导报, 2023, 41(5): 34-48. |
CHEN C Y, WANG J, WANG R X, et al. Research progress and prospect of additive manufacturing of key materials for aeroengines and gas turbines[J]. Science and Technology Review, 2023, 41(5): 34-48 (in Chinese). | |
5 | 张海洲, 白洁, 马瑞, 等. 激光选区熔化成形技术在航空航天发动机制造领域的研究与应用现状[J]. 推进技术, 2023, 44(3): 6-21. |
ZHANG H Z, BAI J, MA R, et al. Current progress and application of selective laser melting technology in aerospace engine manufacturing[J]. Journal of Propulsion Technology, 2023, 44(3): 6-21 (in Chinese). | |
6 | 南极熊3D打印网. 通用增材业务刘志刚: 2019年GE航空将3D打印近40000个金属件[EB/OL]. (2018-07-29)[2023-08-25]. . |
ANTABEAR THE 3D PRINGTING TECHNOLOGY. General additive business liu zhigang: GE aviation will 3D print nearly 40,000 metal parts in 2019[EB/OL]. (2018-07-29)[2023-08-25]. (in Chinese). | |
7 | 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械, 2019(3): 39-43. |
AN G J. Application and prospect of metal additive manufacturing technology in aerospace[J]. Modern Machinery, 2019(3): 39-43 (in Chinese). | |
8 | 赵志国, 柏林, 李黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014(19): 46-49. |
ZHAO Z G, BO L, LI L, et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 2014(19): 46-49 (in Chinese). | |
9 | Shirley-3D. 金属3D打印技术--SLM应用案例[EB/OL]. (2020-08-09)[2023-08-25]. . |
SHIRLEY-3D. Metal 3D printing technology - SLM application cases[EB/OL]. (2020-08-09)[2023-08-25]. (in Chinese). | |
10 | ZHANG M X, LIU C M, SHI X Z, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting[J]. Applied Sciences, 2016, 6(11): 304. |
11 | JI Z, HAN Q. A novel image feature descriptor for SLM spattering pattern classification using a consumable camera[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110: 2955-2976. |
12 | ZOU M, JIANG W G, QIN Q H, et al. Optimized XGBoost model with small dataset for predicting relative density of Ti-6Al-4V parts manufactured by selective laser melting[J]. Materials, 2022, 15(15): 5298. |
13 | 周安, 刘秀波, 刘庆帅, 等. 选区激光熔化成形过程监测技术研究进展[J]. 中国表面工程, 2023, 36(4): 36-50. |
ZHOU A, LIU X B, LIU Q S, et al. Progress of in-process monitoring techniques for selective laser melting[J]. China Surface Engineering, 2023, 36(4): 36-50 (in Chinese). | |
14 | 倪江涛, 周庆军, 衣凤, 等. 激光增材制造技术发展及在航天领域的应用进展[J]. 稀有金属, 2022, 46(10): 1365-1382. |
NI J T, ZHOU Q J, YI F, et al. Development of laser additive manufacturing technology and its application progress in aerospace field[J]. Chinese Journal of Rare Metals, 2022, 46(10): 1365-1382 (in Chinese). | |
15 | GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164. |
16 | ABOULKHAIR T N, MASKERY I, TUCK C, et al. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality[J]. Materials and Design, 2016, 104: 174-182. |
17 | 曾庆鹏, 傅广, 任治好, 等. 多光束激光选区熔化研究进展及展望[J/OL]. 材料工程, (2023-02-14)[2023-08-20]. . |
ZENG Q P, FU G, REN Z H, et al. Progress and prospect of multi-beam selective laser melting[J/OL]. Journal of Materials Engineering, (2023-02-14)[2023-08-20]. (in Chinese). | |
18 | 雷杨, 房立家, 孙兵兵, 等. 多激光束选区熔化成形GH4169微观组织及力学性能[J]. 焊接技术, 2020, 49(7): 27-32, 5-6. |
LEI Y, FANG L J, SUN B B, et al. Microstructures and mechanical properties of GH4169 alloy fabricated by multi-laser beam selective laser melting[J]. Welding Technology, 2020, 49(7): 27-32, 5-6 (in Chinese). | |
19 | SANCHEZ S, HYDE C J, ASHCROFT I A, et al. Multi-laser scan strategies for enhancing creep performance in LPBF[J]. Additive Manufacturing, 2021, 41: 101948. |
20 | LIU J, DONG S Y, JIN X, et al. Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM)[J]. Materials and Design, 2022, 223: 111209. |
21 | WEI K W, LI F Z, HUANG G, et al. Multi-laser powder bed fusion of Ti-6Al-4V alloy: defect, microstructure, and mechanical property of overlap region[J]. Materials Science and Engineering A, 2021, 802: 140644. |
22 | LI F Z, WANG Z M, ZENG X Y. Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting[J]. Materials Letters, 2017, 199: 79-83. |
23 | YIN J, WANG D Z, WEI H L, et al. Dual-beam laser-matter interaction at overlap region during multi-laser powder bed fusion manufacturing[J]. Additive Manufacturing, 2021, 46: 102178. |
24 | 杨圣昆, 谢印开, 胡全栋, 等. 拼接顺序对双激光选区熔化成形TC4钛合金成形性的影响[J]. 航空制造技术, 2022, 65(5): 93-99. |
YANG S K, XIE Y K, HU Q D, et al. Effect of scan order of overlap area on forming qualities of TC4 alloy fabricated by selective dual-beam laser melting technique[J]. Aeronautical Manufacturing Technology, 2022, 65(5): 93-99 (in Chinese). | |
25 | 李鹏, 申红斌, 王志敏, 等. 拼接策略对多光束激光选区熔化成形TA15钛合金组织及性能的影响[J]. 国防制造技术, 2021(4): 27-30. |
LI P, SHEN H B, WANG Z M, et al. Effect of splicing strategy on microstructure and properties of TA15 titanium alloy formed by multi-beam laser selective melting[J]. Defense Manufacturing Technology, 2021(4): 27-30 (in Chinese). | |
26 | 张思远, 王猛, 王冲, 等. 拼接方式对多光束SLM成形TC4成形特性的影响[J]. 应用激光, 2019, 39(4): 544-549. |
ZHANG S Y, WANG M, WANG C, et al. The effect of overlap methods on forming qualities of TC4 alloy fabricated by multi-beam selective laser melting technique[J]. Applied Laser, 2019, 39(4): 544-549 (in Chinese). | |
27 | LIU B, KUAI Z Z, LI Z H, et al. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): microstructures and mechanical properties[J]. Materials, 2018, 11(12): 2354. |
28 | LI Z H, LIU W P, LIU B, et al. Difference-extent of microstructure and mechanical properties: simulating multi-laser selective melting Ti6Al4V[J]. Optics and Laser Technology, 2022, 153: 108249. |
29 | 佘保桢. 多光束激光选区熔化成形TA15合金的基础研究[D]. 武汉: 华中科技大学, 2019: 87-88. |
SHE B Z. Fundamental study on multi-beam selective laser melting of TA15 alloy[D]. Wuhan: Huazhong University of Science and Technology, 2019: 87-88 (in Chinese). | |
30 | 岑伟洪, 汤辉亮, 张江兆, 等. 提升分区搭接质量的激光选区熔化扫描策略[J]. 中国激光, 2021, 48(18): 1802018. |
CEN W H, TANG H L, ZHANG J Z, et al. Scanning strategy to improve the overlapping quality of partition in selective laser melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802018 (in Chinese). | |
31 | WANG D, WANG H, LIU Z X, et al. Influence mechanism of laser delay on internal defect and surface quality in stitching region of 316L stainless steel fabricated by dual-laser selective laser melting[J]. Journal of Manufacturing Processes, 2023, 94: 35-48. |
32 | HEELING T, WEGENER K. The effect of multi-beam strategies on selective laser melting of stainless steel 316L[J]. Additive Manufacturing, 2018, 22: 334-342. |
33 | ATTARIANI H, PETITJEAN S R, DOUSTI M. A digital twin of synchronized circular laser array for powder bed fusion additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123: 1433-1440. |
34 | HE C, RAMANI K S, OKWUDIRE C E. An intelligent scanning strategy (SmartScan) for improved part quality in multi-laser PBF additive manufacturing[J]. Additive Manufacturing, 2023, 64: 103427. |
35 | BERGMUELLER S, SCHEIBER J, KASERER L, et al. Enhancing equiaxed grain formation in a high-alloy tool steel using dual laser powder bed fusion[J]. Additive Manufacturing, 2023, 74: 103727. |
36 | AMANO H, ISHIMOTO T, HAGIHARA K, et al. Impact of gas flow direction on the crystallographic texture evolution in laser beam powder bed fusion[J]. Virtual and Physical Prototyping, 2023, 18(1): e2169172. |
37 | BAEHR S, KLECKER T, PIELMEIER S, et al. Experimental and analytical investigations of the removal of spatters by various process gases during the powder bed fusion of metals using a laser beam[J/OL]. Progress in Additive Manufacturing, (2023-08-05)[2023-10-13]. . |
38 | KJER M B, PAN Z, NADIMPALLI V K, et al. Experimental analysis and spatial component impact of the inert cross flow in open-architecture laser powder bed fusion[J]. Journal of Manufacturing and Materials Processing, 2023, 7(4): 143. |
39 | ZOU S, XIAO H B, YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics, 2020, 16: 103005. |
40 | XU G G, JIANG W G, SUN Y Y, et al. Particle-scale computational fluid dynamics simulation on selective parallel dual-laser melting of nickel-based superalloy[J]. Journal of Manufacturing Processes, 2022, 73: 197-206. |
41 | PROMOPPATUM P. Dual-laser powder bed fusion additive manufacturing: computational study of the effect of process strategies on thermal and residual stress formations[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 1337-1351. |
42 | 李泓历, 傅广, 任治好, 等. 多光束激光选区熔化拼接区域熔池动力学行为数值模拟[J].表面技术, 2023, 52(11): 406-418. |
LI H L, FU G, REN Z H, et al. Numerical simulation of molten pool dynamics in multi-beam laser selective fusion splicing region[J]. Surface Technology, 2023, 52(11): 406-418 (in Chinese). | |
43 | BALL A K, BASAK A. AI Modeling for high-fidelity heat transfer and thermal distortion forecast in metal additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128: 2995-3010. |
44 | GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487. |
45 | WEI C, LI L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion[J]. Virtual and Physical Prototyping, 2021, 16(3): 1-25. |
46 | 谢寅, 滕庆, 沈沐宇, 等. 多激光粉床熔融成形GH3536合金搭接区域组织与性能特征研究[J]. 中国激光, 2023, 50(8): 0802303. |
XIE Y, TENG Q, SHEN M Y, et al. Study on microstructure and properties of overlap region of GH3536 alloy processed by multi-laser powder bed fusion[J]. Chinese Journal of Lasers, 2023, 50(8): 0802303 (in Chinese). | |
47 | LI Z H, KUAI Z Z, BAI P K, et al. Microstructure and tensile properties of AlSi10Mg alloy manufactured by multi-laser beam selective laser melting (SLM)[J]. Metals, 2019, 9(12): 1337. |
48 | WEN S F, YAN C Z, WEI Q S, et al. Investigation and development of large-scale equipment and high performance materials for powder bed laser fusion additive manufacturing[J]. Virtual and Physical Prototyping, 2014, 9(4): 213-223. |
49 | 刘正武, 侯春杰, 王联凤, 等. 多激光束选区熔化成形技术研究[J]. 制造技术与机床, 2018(1): 56-59. |
LIU Z W, HOU C J, WANG L F, et al. Study on selective multi-laser beam melting technology[J]. Manufacturing Technology and Machine Tool, 2018(1): 56-59 (in Chinese). | |
50 | SOLUTIONS SLM. Meet the NXG XII 600: A new era in manufacturing[EB/OL]. [2023-08-27]. . |
51 | BRIGHT LASER TECHNOLOGIES. BLT-S600: Bigger than bigger, let’s achieve more[EB/OL]. [2023-08-27]. . |
52 | 王泽敏, 黄文普, 曾晓雁. 激光选区熔化成形装备的发展现状与趋势[J]. 精密成形工程, 2019, 11(4): 21-28. |
WANG Z M, HUANG W P, ZENG X Y. Status and prospect of selective laser melting machines[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 21-28 (in Chinese). | |
53 | 樊世冲, 殷凤仕, 任智强, 等. 基于电弧的多能场复合增材制造技术研究现状[J]. 表面技术, 2023, 52(8): 49-70. |
FAN S C, YIN F S, REN Z Q, et al. Research status of multi-energy field composite additive manufacturing technology based on arc[J]. Surface Technology, 2023, 52(8): 49-70 (in Chinese). | |
54 | HU Y B. Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications[J]. Materials Horizons, 2021, 8(3): 885-911. |
55 | SAFAEE S, SCHOCK M, JOYEE E B, et al. Field-assisted additive manufacturing of polymeric composites[J]. Additive Manufacturing, 2022, 51: 102642. |
56 | 赵占勇, 白培康, 刘斌, 等. 一种强磁场下选择性激光熔化SLM成形缸: 中国, CN205888085U[P]. 2017-01-18. |
ZHAO Z Y, BAI P K, LIU B, et al. A selective laser melting SLM forming cylinder under strong magnetic field: China, CN205888085U[P]. 2017-01-18 (in Chinese). | |
57 | 刘胜, 李辉, 申胜男, 等. 一种热磁耦合场协同选择性激光熔化装置及其加热方法: 中国, CN108421976A[P]. 2019-09-17. |
LIU S, LI H, SHEN S N, et al. The invention relates to a thermal-magnetic coupling field cooperative selective laser melting device and a heating method thereof: China, CN108421976A[P]. 2019-09-17 (in Chinese). | |
58 | FAN W, TAN H, LIN X, et al. Microstructure formation of Ti-6Al-4V in synchronous induction assisted laser deposition[J]. Materials and Design, 2018, 160: 1096-1105. |
59 | TODARO C J, EASTON M A, QIU D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11(1): 142. |
60 | FAN X Q, FLEMING T G, REES D T, et al. Thermoelectric magnetohydrodynamic control of melt pool flow during laser directed energy deposition additive manufacturing[J]. Additive Manufacturing, 2023, 71: 103587. |
61 | KANG N, YUAN H, CODDET P, et al. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field[J]. Materials Science and Engineering C, 2017, 70: 405-407. |
62 | DU D F, HALEY C J, DONG A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J]. Materials and Design, 2019, 181: 107923. |
63 | KANG N, CODDET P, WANG J, et al. A novel approach to in-situ produce functionally graded silicon matrix composite materials by selective laser melting[J]. Composite Structures, 2017, 172: 251-258. |
64 | 程坦, 张振雨, 刘演冰, 等. 在线稳恒磁场对激光选区熔化成形GH3536组织和性能各向异性的影响[J]. 中国激光, 2022, 49(8): 0802017. |
CHENG T, ZHANG Z Y, LIU Y B, et al. Effects of online static magnetic field on anisotropy of microstructure and mechanical properties of GH3536 fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2022, 49(8): 0802017 (in Chinese). | |
65 | ZHANG B, SHIRVANI K, TAHERI M, et al. Effect of TiC and magnetic field on microstructure and mechanical properties of IN738 superalloy processed by selective laser melting[J]. Journal of Materials Engineering and Performance, 2024, 33: 3494-3509. |
66 | 席丽霞, 陆秋阳, 顾冬冬. 一种基于超声处理辅助激光 3 D打印纳米粒子修饰Al-Cu合金的晶粒细化方法: 中国, CN113600833A[P]. 2022-10-11. |
XI L X, LU Q Y, GU D D. A method for grain refinement of Al-Cu alloy modified by ultrasonic processing assisted laser 3 D printing nanoparticles: China, CN113600833A[P]. 2022-10-11 (in Chinese). | |
67 | TAHERI M, RAZAVI M. The effect of ultrasonic field on the microstructure and corrosion behavior of Fe-based amorphous coating applied to selective laser melting[J]. Materials Research Express, 2023, 10(7): 076508. |
68 | MÜLLER A V, SCHLICK G, NEU R, et al. Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 ℃[J]. Nuclear Materials and Energy, 2019, 19: 184-188. |
69 | WANG J, FAUTRELLE Y, REN Z M, et al. Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field[J]. Applied Physics Letters, 2012, 101(25): 251904. |
70 | HU S D, HOU L, WANG K, et al. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J]. Journal of Materials Science and Technology, 2021, 76(17): 207-214. |
71 | LI X, FAUTRELLE Y, GAGNOUD A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification[J]. Acta Materialia, 2014, 64: 367-381. |
72 | ZHOU H X, SONG C H, YANG Y Q, et al. The microstructure and properties evolution of SS316L fabricated by magnetic field-assisted laser powder bed fusion[J]. Materials Science and Engineering A, 2022, 845: 143216. |
73 | 杜大帆, 董安平, 孙宝德, 等. 一种减少激光选区熔化成型构件孔隙率的方法: 中国, CN112974803A[P]. 2022-08-23. |
DU D F, DONG A P, SUN B D, et al. The invention relates to a method for reducing the porosity of a laser selective melting forming member: China, CN112974803A[P]. 2022-08-23 (in Chinese). | |
74 | CHEN L W, LI H, LIU S, et al. Simulation of surface deformation control during selective laser melting of AlSi10Mg powder using an external magnetic field[J]. AIP Advances, 2019, 9(4): 045012. |
75 | ZHU W L, YU S, CHEN C Y, et al. Effects of static magnetic field on the microstructure of selective laser melted inconel 625 superalloy: numerical and experiment investigations[J]. Metals, 2021, 11(11): 1846. |
76 | ZHOU Z, YAO C F, ZHAO Y, et al. Effect of ultrasonic impact treatment on the surface integrity of nickel alloy 718[J]. Advances in Manufacturing, 2021, 9: 160-171. |
77 | CAO Y, ZHANG Y C, MING W Y, et al. Review: the metal additive-manufacturing technology of the ultrasonic-assisted wire-and-arc additive-manufacturing process[J]. Metals, 2023, 13(2): 398. |
78 | YUAN D, SHAO S Q, GUO C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrasonics Sonochemistry, 2021, 73: 105472. |
79 | TAN C L, LI R S, SU J L, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture, 2023, 189: 104032. |
80 | CONG W L, NING F D. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel[J]. International Journal of Machine Tools and Manufacture, 2017, 121: 61-69. |
81 | ŻRODOWSKI Ł, CHOMA T, WILKOS I, et al. Influence of surface characteristics and finishing on fatigue properties of additively manufactured Ti6A14V[C]∥2021 6th International Conference on Nanotechnology for Instrumentation and Measurement. 2021: 1-4. |
82 | 葛亚琼, 徐海军, 畅泽欣, 等. 一种多能场协同作用的梯度材料制备系统: 中国, CN116021034A[P]. 2023-04-28. |
GE Y Q, XU H J, CHANG Z X, et al. A multi-energy field synergistic gradient material preparation system: China, CN116021034A[P]. 2023-04-28 (in Chinese). | |
83 | KIM B S, LEE N, THOTA S, et al. Effects of radiative local heating on metal solidification during selective laser melting for additive manufacturing[J]. Applied Surface Science, 2019, 496: 143594. |
84 | FAN W, TAN H, ZHANG F Y, et al. Overcoming the limitation of in-situ microstructural control in laser additive manufactured Ti-6Al-4V alloy to enhanced mechanical performance by integration of synchronous induction heating[J]. Journal of Materials Science and Technology, 2021, 94: 32-46. |
85 | 黄西娜, 曹煜博, 岳文, 等. 外加物理场对激光熔化沉积内部缺陷的控制[J]. 粉末冶金工业, 2023, 33(1): 107-114. |
HUANG X N, CAO Y B, YUE W, et al. The control of internal defects during laser melting deposition by external physical field[J]. Powder Metallurgy Industry, 2023, 33(1): 107-114 (in Chinese). | |
86 | SHIM D S, BAEK GY, LEE E M. Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder[J]. Materials Science and Engineering A, 2017, 682: 550-562. |
87 | DALAEE M T, GLOOR L, LEINENBACH C, et al. Experimental and numerical study of the influence of induction heating process on build rates induction heating-assisted laser direct metal deposition (IH-DMD)[J]. Surface and Coatings Technology, 2020, 384: 125275. |
88 | 廖文和, 刘婷婷, 张凯, 等. 一种用于陶瓷材料的选区激光熔融成形设备: 中国, CN104016686A[P]. 2015-11-11. |
LIAO W H, LIU T T, ZHANG K, et al. A selective laser melting forming equipment for ceramic materials: China, CN104016686A[P]. 2015-11-11 (in Chinese). | |
89 | PARKER N, HEFFORD S, LEES J, et al. A novel VHF heating system to aid selective laser melting[C]∥2019 IEEE MTT-S International Microwave Symposium. 2019: 975-978. |
90 | 张鹏, 朱强, 王敏, 等. 一种激光选区熔化放电复合工艺及设备: 中国, CN114260463A[P]. 2022-05-27. |
ZHANG P, ZHU Q, WANG M, et al. A laser selective melting discharge composite process and equipment: China, CN114260463A[P]. 2022-05-27 (in Chinese). | |
91 | WU B, JI X Y, ZHOU J X, et al. In situ monitoring methods for selective laser melting additive manufacturing process based on images-a review[J]. China Foundry, 2021, 18(4): 265-285. |
92 | 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790. |
CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524790 (in Chinese). | |
93 | EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing[J]. Materials and Design, 2016, 95: 431-445. |
94 | GRASSO M, COLOSIMO B M. Process defects and in situ monitoring methods in metal powder bed fusion: a review[J]. Measurement Science and Technology, 2017, 28(4): 044005. |
95 | LIN Z Q, LAI Y W, PAN T T, et al. A new method for automatic detection of defects in selective laser melting based on machine vision[J]. Materials, 2021, 14: 4175. |
96 | YANG D K, LI H, LIU S, et al. In situ capture of spatter signature of SLM process using maximum entropy double threshold image processing method based on genetic algorithm[J]. Optics and Laser Technology, 2020, 131: 106371. |
97 | MAZZOLENI L, DEMIR A G, CAPRIO L, et al. Real-time observation of melt pool in selective laser melting: Spatial, temporal, and wavelength resolution criteria[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1179-1190. |
98 | LUO S, MA X, XU J, et al. Deep learning based monitoring of spatter behavior by the acoustic signal in selective laser melting[J]. Sensors, 2021, 21: 7179. |
99 | LI J C, ZHOU Q, HUANG X F, et al. In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting[J]. Journal of Intelligent Manufacturing, 2023, 34: 853-867. |
100 | LI J C, CAO L C, XU J, et al. In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing[J]. Measurement, 2022, 187: 110232. |
101 | 王迪, 王艺锰, 杨永强, 等. 一种激光选区熔化加工过程同轴监测方法及装置: 中国, CN106984813A[P]. 2019-08-20. |
WANG D, WANG Y M, YANG Y Q, et al. The invention relates to a coaxial monitoring method and device for laser selective melting process: China, CN106984813A[P]. 2019-08-20 (in Chinese). | |
102 | STOLIDI A, TOURON A, TOULEMONDE L, et al. Towards in-situ fumes composition monitoring during an additive manufacturing process using energy dispersive X-ray fluorescence spectrometry[J]. Additive Manufacturing Letters, 2023, 6: 100153. |
103 | FANG Q H, TAN Z B, LI H, et al. In-situ capture of melt pool signature in selective laser melting using U-Net-Based convolutional neural network[J]. Journal of Manufacturing Processes, 2021, 68: 347-355. |
104 | XING W, CHU X, LYU T Y, et al. Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process[J]. Journal of Manufacturing Processes, 2022, 74: 486-499. |
105 | LE T N, LO Y L, LIN Z H. Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy[J]. Additive Manufacturing, 2020, 36: 101519. |
106 | PAVLOV M, DOUBENSKAIA M, SMUROV I. Pyrometric analysis of thermal processes in SLM technology[J]. Physics Procedia, 2010, 5: 523-531. |
107 | ZHENG L P, ZHANG Q, CAO H Z, et al. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting[J]. Materials and Design, 2019, 183: 108110. |
108 | BRUNA ROSSO C, CAPRIO L, MAZZOLENI L, et al. Influence of temporal laser emission profile on the selective laser melting (SLM) of thin structures[J]. Lasers in Engineering, 2020, 47: 161-182. |
109 | HUSSAIN S Z, KAUSAR Z, KORESHI Z U, et al. Feedback control of melt pool area in selective laser melting additive manufacturing process[J]. Processes, 2021, 9: 1547. |
110 | RENKEN V, FREYBERG A, SCHÜNEMANN K, et al. In-process closed-loop control for stabilising the melt pool temperature in selective laser melting[J]. Progress in Additive Manufacturing, 2019, 4(4): 411-421. |
111 | OSTER S, MAIERHOFER C, MOHR G, et al. Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography[C]∥Proceedings of SPIE 11743, Thermosense: Thermal Infrared Applications XLIII. 2021: 117430C. |
112 | WANG X, LOUGH C S, BRISTOW D A, et al. A layer-to-layer control-oriented model for selective laser melting[C]∥2020 American Control Conference (ACC). 2020: 481-486. |
113 | SHEVCHIK S A, KENEL C, LENIENBACH C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing, 2018, 21: 598-604. |
114 | 席丽霞, 顾冬冬, 侯佳兴, 等. 一种基于在线超声监测的实时调控激光增材制造合金方法: 中国, CN116652208A[P]. 2023-08-29. |
XI L X, GU D D, HOU J X, et al. A real-time control laser additive alloy manufacturing method based on online ultrasonic monitoring is presented: China, CN116652208A[P]. 2023-08-29 (in Chinese). | |
115 | ITO K, KUSANO M, DEMURA M, et al. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement[J]. Additive Manufacturing, 2021, 40: 101915. |
116 | PLOTNIKOV Y, HENKEL D, BURDICK J, et al. Infrared-assisted acoustic emission process monitoring for additive manufacturing[J]. AIP Conference Proceedings, 2019, 2102(1): 020006. |
117 | VAN Belle L, VANSTEENKISTE G, BOYER J C. Investigation of residual stresses induced during the selective laser melting process[J]. Key Engineering Materials, 2013, 554-557: 1828-1834. |
118 | LI Z R, LIANG W D, FAN Z J, et al. Advances in online detection technology for laser additive manufacturing: a review[J]. 3D Printing and Additive Manufacturing, 2023, 10(3): 467-489. |
119 | BOSCHETTO A, BOTTINI L, VATANPARAST S. Powder bed monitoring via digital image analysis in additive manufacturing[J]. Journal of Intelligent Manufacturing, 2024, 35: 991-1011. |
120 | BOSCHETTO A, BOTTINI L, VATANPARAST S, et al. Part defects identification in selective laser melting via digital image processing of powder bed anomalies[J]. Production Engineering, 2022, 16: 691-704. |
121 | MCCANN R, OBEIDI M A, HUGHES C, et al. In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review[J]. Additive Manufacturing, 2021, 45, 102058. |
122 | LU Q Y, NGUYEN N V, HUM A J W, et al. Identification and evaluation of defects in selective laser melted 316L stainless steel parts via in-situ monitoring and micro computed tomography[J]. Additive Manufacturing, 2020, 35: 101287. |
123 | MODARESIALAM M, ROOZBAHANI H, ALIZADEH M, et al. In-situ monitoring and defect detection of selective laser melting process and impact of process parameters on the quality of fabricated SS 316L[J]. IEEE Access, 2022, 10: 46100-46113. |
124 | YADAV P, RIGO O, ARVIEU C, et al. Data treatment of in situ monitoring systems in selective laser melting machines[J]. Advanced Engineering Materials, 2021, 23: 2001327. |
125 | LIN X, LIU B, SHEN A C, et al. Collaborative control for in situ monitoring of molten pool in selective laser melting[J]. Frontiers in Mechanical Engineering, 2023, 9: 1123751. |
126 | LU Y Q, WONG H C. Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring[J]. Virtual and Physical Prototyping, 2018, 13(2): 39-48. |
127 | COECK S, BISHT M, PLAS J, et al. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data[J]. Additive Manufacturing, 2019, 25: 347-356. |
128 | PANDIYAN V, DRISSI-DAOUDI R, SHEVCHIK S, et al. Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions[J]. Virtual and Physical Prototyping, 2021, 16(4): 481-497. |
129 | ESCHNER N, WEISER L, HÄFNER B, et al. Classification of specimen density in laser powder bed fusion (L-PBF) using in-process structure-borne acoustic process emissions[J]. Additive Manufacturing, 2020, 34: 101324. |
130 | WANG H, LI B, XUAN F Z. Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 122: 2277-2292. |
131 | LI J C, ZHOU Q, CAO L C, et al. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting[J]. Journal of Manufacturing Systems, 2022, 64: 429-442. |
132 | LI J C, ZHANG X G, ZHOU Q, et al. A feature-level multi-sensor fusion approach for in-situ quality monitoring of selective laser melting[J]. Journal of Manufacturing Processes, 2022, 84, 913-926. |
133 | LIN X, ZHU K P, FUH J Y H, et al. Metal-based additive manufacturing condition monitoring methods: from measurement to control[J]. ISA Transactions, 2022, 120: 147-166. |
134 | SAMPEDRO G A R, RACHMAWATI S M, KIM D S, et al. Exploring machine learning-based fault monitoring for polymer-based additive manufacturing: challenges and opportunities[J]. Sensors, 2022, 22(23): 9446. |
135 | KLESZCZYNSKI S, JACOBSMÜHLEN J ZUR, REINARZ B, et al. Improving process stability of laser beam melting systems[C]∥Fraunhofer Direct Digital Manufacturing Conference, 2014. |
136 | LI Y X, ZHAO W, LI Q S, et al. In-situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors[J]. Sensors, 2019, 19(11): 2589. |
137 | 宋剑锋, 宋有年, 王文武, 等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光, 2022, 49(2): 0202008. |
SONG J F, SONG Y N, WANG W W, et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J]. Chinese Journal of Lasers, 2022, 49(2): 0202008 (in Chinese). | |
138 | ZHANG B C, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering A, 2013, 584: 21-31. |
139 | 苏金龙, 陈乐群, 谭超林, 等. 基于机器学习的增材制造过程优化与新材料研发进展[J]. 中国激光, 2022, 49(14): 1402101. |
SU J L, CHEN L Q, TAN C L, et al. Progress in machine-learning-assisted process optimization and novel material development in additive manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 1402101 (in Chinese). | |
140 | ROHANINEJAD M, TAVAKKOLI M R, VAHEDI N B, et al. A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines[J]. International Journal of Production Research, 2022, 60(20): 6205-6225. |
141 | CHEN Y Y, WANG H Z, WU Y, et al. Predicting the printability in selective laser melting with a supervised machine learning method[J]. Materials, 2020, 13(22): 5063. |
142 | 张赛凡, 李博, 轩福贞. 激光选区熔化过程声发射信号的降噪与分类预测方法[J/OL]. 机械工程学报, (2022-04-21)[2023-08-22]. . |
ZHANG S F, LI B, XUAN F Z. Signal denoising and classification prediction method for on-line monitoring of acoustic emission during laser melting process[J/OL]. Journal of Mechanical Engineering, (2022-04-21)[2023-08-22]. (in Chinese). | |
143 | CHANG T W, LIAO K W, LIN C C, et al. Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 3177-3184. |
144 | LIAN Y P, GAN Z T, YU C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing[J]. Materials and Design, 2019, 169: 107672. |
145 | CHEN H Y, LIN C C, HORNG M H, et al. Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing[J]. Materials, 2022, 15: 5662. |
146 | WANG R X, CHEUNG C F, WANG C J, et al. Deep learning characterization of surface defects in the selective laser melting process[J]. Computers in Industry, 2022, 140: 103662. |
147 | TRIDELLO A, CIAMPAGLIA A, BERTO F, et al. Assessment of the critical defect in additive manufacturing components through machine learning algorithms[J]. Applied Sciences, 2023, 13(7): 4294. |
148 | SONG Z R, WANG X M, GAO Y Y, et al. A hybrid deep generative network for pore morphology prediction in metal additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2023, 145(7): 071005. |
149 | KWON O, KIM G H, HAM J M, et al. A deep neural network for classification of melt-pool images in metal additive manufacturing[J]. Journal of Intelligent Manufacturing, 2020, 31(2): 375-386. |
150 | LI B, ZHANG W, XUAN F Z. Machine-learning prediction of selective laser melting additively manufactured part density by feature-dimension-ascended Bayesian network model for process optimisation[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 4023-4038. |
151 | MAITRA V, SHI J, LU C Y. Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach[J]. Journal of Manufacturing Processes, 2022, 78: 183-201. |
152 | RAJU K L, THAPLIYAL S, SIGATAPU S, et al. Process parameter dependent machine learning model for densification prediction of selective laser melted Al-50Si alloy and its validation[J]. Journal of Materials Engineering and Performance, 2022, 31(10): 8451-8458. |
153 | YANASE Y, MIYAUCHI H, MATSUMOTO H, et al. Densification behavior and microstructures of the Al-10%Si-0.35Mg alloy fabricated by selective laser melting: from experimental observation to machine learning: mechanics of materials[J]. Materials Transactions, 2022, 63(2): 176-184. |
154 | RANKOUHI B, JAHANI S, PFEFFERKORN F E, et al. Compositional grading of a 316L-Cu multi-material part using machine learning for the determination of selective laser melting process parameters[J]. Additive Manufacturing, 2021, 38: 101836. |
155 | LA FÉ-PERDOMO I, RAMOS-GREZ J A, JERIA I, et al. Comparative analysis and experimental validation of statistical and machine learning-based regressors for modeling the surface roughness and mechanical properties of 316L stainless steel specimens produced by selective laser melting[J]. Journal of Manufacturing Processes, 2022, 80: 666-682. |
156 | MAITRA V, SHI J. Evaluating the predictability of surface roughness of Ti-6Al-4V alloy from selective laser melting[J]. Advanced Engineering Materials, 2023, 25: 2300075. |
157 | FOTOVVATI B, CHOU K. Build surface study of single-layer raster scanning in selective laser melting: surface roughness prediction using deep learning[J]. Manufacturing Letters, 2022, 33: 701-711. |
158 | BARRIONUEVO G O, WALCZAK M, RAMOS-GREZ J, et al. Microhardness and wear resistance in materials manufactured by laser powder bed fusion: machine learning approach for property prediction[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 43: 106-114. |
159 | THEEDA S, JAGDALE H S, RAVICHANDER B B, et al. Optimization of process parameters in laser powder bed fusion of SS 316L parts using artificial neural networks[J]. Metals, 2023, 13(5): 842. |
160 | YANG Z T, YANG M, SISSON R, et al. Machine learning model to predict tensile properties of annealed Ti6Al4V parts prepared by selective laser melting[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2022, 36: E30. |
161 | KUSANO M, MIYAZAKI S, WATANABE M, et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification[J]. Materials Science and Engineering A, 2020, 787: 139549. |
162 | MUHAMMAD W, BRAHME A P, IBRAGIMOVA O, et al. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys[J]. International Journal of Plasticity, 2021, 136: 102867. |
163 | CENTOLA A, CIAMPAGLIA A, TRIDELLO A, et al. Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4V components[J]. Fatigue and Fracture of Engineering Materials and Structures, 2023, 46(11): 4350-4370. |
164 | HORŇAS J, BĚHAL J, HOMOLA P, et al. Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach[J]. International Journal of Fatigue, 2023, 169: 107483. |
165 | LI J, YANG Z M, QIAN G A, et al. Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting[J]. International Journal of Fatigue, 2022, 158: 106764. |
166 | SHI T, SUN J Y, LI J H, et al. Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Fatigue, 2023, 171: 107585. |
167 | 武建国, 安红萍. 缩松致密化过程中的屈服轨迹[J]. 铸造, 2020, 69(12): 1272-1276. |
WU J G, AN H P. Yield locus of dispersed shrinkage during densifying process[J]. Foundry, 2020, 69(12): 1272-1276 (in Chinese). | |
168 | CHEN D J, WANG P, PAN R, et al. Characteristics of metal specimens formed by selective laser melting: a state-of-the-art review[J]. Journal of Materials Engineering and Performance, 2020, 30(10): 7073-7100. |
169 | 张纪奎, 孔祥艺, 马少俊, 等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021, 42(10): 525430. |
ZHANG J K, KONG X Y, MA S J, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 525430 (in Chinese). | |
170 | 肖贵坚, 刘帅, 贺毅, 等. 钛合金激光砂带加工的离焦控制与表面形貌[J]. 航空学报, 2022, 43(4): 525603. |
XIAO G J, LIU S, HE Y, et al. Defocus control and surface topography of titanium alloy laser belt processing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525603 (in Chinese). | |
171 | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587. |
PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525587 (in Chinese). | |
172 | NAGARAJAN B, HU Z H, SONG X, et al. Development of micro selective laser melting: the state of the art and future perspectives[J]. Engineering, 2019, 5(4): 702-720. |
173 | SUN J F, YANG Y Q, WANG D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics and Laser Technology, 2013, 49: 118-124. |
174 | DO D K, LI P F. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping, 2016, 11(1): 41-47. |
175 | XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84. |
176 | ETTEFAGH A H, ZENG C Y, GUO S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing[J]. Additive Manufacturing, 2019, 28: 252-258. |
177 | ZAFARI A, XIA K. Superior titanium from hybridised microstructures - a new strategy for future alloys[J]. Scripta Materialia, 2019, 173: 61-65. |
178 | 彭斌意, 刘洋, 郑晓董, 等. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48. |
PENG B Y, LIU Y, ZHENG X D, et al. Compression resistance of particle reinforced titanium matrix composites prepared by selective laser melting[J]. Journal of Materials Engineering, 2022, 50(6): 36-48 (in Chinese). | |
179 | LI N, LIU W, WANG Y, et al. Laser additive manufacturing on metal matrix composites: a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(3): 208-223. |
180 | HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: an overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438. |
181 | JIANG Q H, LI S, GUO S, et al. Comparative study on process-structure-property relationships of TiC/Ti6Al4V and Ti6Al4V by selective laser melting[J]. International Journal of Mechanical Sciences, 2023, 241: 107963. |
182 | ZHOU Z G, LIU Y Z, LIU X H, et al. Microstructure evolution and mechanical properties of in-situ Ti6Al4V-TiB composites manufactured by selective laser melting[J]. Composites Part B: Engineering, 2021, 207: 108567. |
183 | SHISHKOVSKY I, KAKOVKINA N, SHERBAKOV V. Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting[J]. Composite Structures, 2017, 169: 90-96. |
184 | 朱磊, 吴文杰, 范树迁, 等. 气-液反应激光原位增材制造TiN增强钛基复合材料组织结构及力学性能研究[J]. 稀有金属材料与工程, 2022, 51(6): 2151-2160. |
ZHU L, WU W J, FAN S Q, et al. Microstructure and mechanical properties of in-situ laser additive manufacturing of TiN reinforced Ti6Al4V matrix composites based on gas-liquid reaction[J]. Rare Metal Materials and Engineering, 2022, 51(6): 2151-2160 (in Chinese). | |
185 | ZHANG J L, SONG B, CAI C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment[J]. Advanced Powder Materials, 2022, 1(2): 100010. |
186 | TAUB A, MOOR E D, LUO A, et al. Materials for automotive lightweighting[J]. Annual Review of Materials Research, 2019, 49(1): 327-359. |
187 | ZHAO X, DONG S Y, YAN S X, et al. The effect of different scanning strategies on microstructural evolution to 24CrNiMo alloy steel during direct laser deposition[J]. Materials Science and Engineering A, 2020, 771: 138557. |
188 | CUI X, ZHANG S, WANG Z Y, et al. Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting[J]. Materials Science and Engineering A, 2022, 845: 143215. |
189 | WANG F Z, ZHANG C H, CUI X, et al. Effect of energy density on the defects, microstructure, and mechanical properties of selective-laser-melted 24CrNiMo low-alloy steel[J]. Journal of Materials Engineering and Performance, 2022, 31(5): 3520-3534. |
190 | CHEN Y, RONG P, MEN X N, et al. An experimental investigation into residual stress control of 24CrNiMo alloy steel by selective laser melting[J]. Coatings, 2023, 13(2): 321. |
191 | MA Y X, GAO Y F, ZHAO L, et al. Optimization of process parameters and analysis of microstructure and properties of 18Ni300 by selective laser melting[J]. Materials, 2022, 15(14): 4757. |
192 | HABASSI F, HOURIA M, BARKA N, et al. Influence of post-treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel[J]. Materials Characterization, 2023, 202: 112980. |
193 | OSTROVSKI I F, RABELO A, BODZIAK S, et al. Effect of the plasma nitriding on the mechanical properties of the 18Ni300 steel obtained by selective laser melting[J]. Surface and Coatings Technology, 2023, 466: 129688. |
194 | FANG Y J, KIM M K, ZHANG Y L, et al. Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: a systematic review[J]. Journal of Manufacturing Processes, 2022, 74: 592-639. |
195 | ZHAO X, WEI Q S, GAO N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing[J]. Journal of Materials Processing Technology, 2019, 270: 8-19. |
196 | TRAN D, LIN C K, TUNG P C, et al. Enhancing mechanical and corrosion properties of AISI 420 with titanium-nitride reinforcement through high-power-density selective laser melting using two-stage mixed TiN/AISI 420 powder[J]. Materials, 2023, 16(11): 4198. |
197 | OZSOY A, AYDOGAN E, DERICIOGLU A F. Selective laser melting of Nano-TiN reinforced 17-4 PH stainless steel: densification, microstructure and mechanical properties[J]. Materials Science and Engineering A, 2022, 836: 142574. |
198 | KANG N, MA W Y, LI F H, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum, 2018, 154: 69-74. |
199 | ZHANG M H, ZHANG B C, WEN Y J, et al. Research progress on selective laser melting processing for nickel-based superalloy[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(3): 369-388. |
200 | SUI S, LI H S, LI Z, et al. Introduction of a new method for regulating laves phases in inconel 718 superalloy during a laser-repairing process[J]. Engineering, 2022, 16(9): 239-246. |
201 | PANWISAWAS C, TANG Y B, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11(1): 2327. |
202 | MOSTAFAEI A, GHIAASIAAN R, HO I T, et al. Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship[J]. Progress in Materials Science, 2023, 136: 101108. |
203 | XU J, WU Z C, NIU J P, et al. Effect of laser energy density on the microstructure and microhardness of inconel 718 alloy fabricated by selective laser melting[J]. Crystals, 2022, 12(9): 1243. |
204 | BAI P K, HUO P C, WANG J, et al. Microstructural evolution and mechanical properties of Inconel 718 alloy manufactured by selective laser melting after solution and double aging treatments[J]. Journal of Alloys and Compounds, 2022, 911: 164988. |
205 | GAIN A K, LI Z, ZHANG L C. Wear mechanism, subsurface structure and nanomechanical properties of additive manufactured Inconel nickel (IN718) alloy[J]. Wear, 2023, 523: 204863. |
206 | 何磊, 汪超, 邓甜甜. 后处理工艺对激光选区熔化Hastelloy-X合金微观组织及力学性能的影响[J]. 动力工程学报, 2023, 43(5): 511-518. |
HE L, WANG C, DENG T T. Effect of post treatment process on microstructure and mechanical behaviour of Hastelloy-X alloy produced by selective laser melting[J]. Journal of Chinese Society of Power Engineering, 2023, 43(5): 511-518 (in Chinese). | |
207 | 李雅莉, 雷力明, 侯慧鹏, 等. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106. |
LI Y L, LEI L M, HOU H P, et al. Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy[J]. Journal of Materials Engineering, 2019, 47(5): 100-106 (in Chinese). | |
208 | MONTERO-SISTIAGA M L, POURBABAK S, HUMBEECK J V, et al. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)[J]. Materials and Design, 2019, 165: 107598. |
209 | YUAN Z W, CHANG F C, CHEN A, et al. Microstructure and properties of SLM-Hastelloy X alloy after different hot isostatic pressing + heat treatment[J]. Materials Science and Engineering A, 2022, 852: 143714. |
210 | WANG Z Q, GAO S, LI S J, et al. Research progress of laser additive manufacturing nickel-based alloy metal matrix composites[J]. Metals, 2023, 13(1): 129. |
211 | SHUAI C J, WANG B, BIN S Z, et al. TiO2-induced in situ reaction in graphene oxide-reinforced AZ61 biocomposites to enhance the interfacial bonding[J]. ACS Applied Materials and Interfaces, 2020, 12(20): 23464-23473. |
212 | LIU S Y, ZHANG W, PENG Y B, et al. Microstructure evolution and mechanical properties of in-situ multi-component carbides reinforced FeCoNi alloy[J]. Journal of Alloys and Compounds, 2021, 886: 161215. |
213 | CHEN W G, YANG T, DONG L L, et al. Advances in graphene reinforced metal matrix nanocomposites: mechanisms, processing, modelling, properties and applications[J]. Nanotechnology and Precision Engineering, 2020, 3(4): 189-210. |
214 | ZHANG B C, BI G J, NAI S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting[J]. Optics and Laser Technology, 2016, 80: 186-195. |
215 | CHENG X P, ZHAO Y N, QIAN Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3 [J]. Materials Science and Engineering A, 2021, 824: 141867. |
216 | GAO Y K, CHEN H S, ZHOU J, et al. Microstructures and wear behaviors of WC particle reinforced nickel-based composites fabricated by selective laser melting[J]. Journal of Manufacturing Processes, 2023, 95: 291-301. |
217 | WANG P, ZHANG B C, TAN C C, et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting[J]. Materials and Design, 2016, 112: 290-299. |
[1] | Zeyong YIN, Gaiqi LI, Jiancheng SHI, Yueqian YIN. Concept, method and practice of advanced versatile core engine derivative [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 29713-029713. |
[2] | Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693. |
[3] | Ruixian MA, Xin WANG, Kaiming WANG, Bin LI, Mingfu LIAO, Siji WANG. Rubbing experimental study on labyrinth and rubber⁃coated case for aero⁃engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628350-628350. |
[4] | Yuan XIAO, Kun FENG, Minghui HU, Zhinong JIANG. Extraction method for unsteady vibration components of aero-engine rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228158-228158. |
[5] | Yong SHANG, Huijun YANG, Yang FENG, Changzhen ZHANG, Yanling PEI, Shengkai GONG. Research progress of smart thermal barrier coatings based on phosphorescence temperature measurement technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 29341-029341. |
[6] | Hui LI, Jianfei GU, Jinan LI, Zhanbin SUN, Kaihua SUN, Xiaochuan LIU, Xin WANG, Bingjie ZHANG, Xiangping WANG, Hui MA. Dynamics modeling and validation of L-shaped pipeline in aero-engine under multi-source excitations [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 229375-229375. |
[7] | Yingjiao HU, Feng XU, Zhijun YANG. Overview of aero-engine ice testing capability [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729449-729449. |
[8] | Jinyi MA, Can WANG, Tao XUE, Jianliang AI, Yiqun DONG. Development and illustrative applications of an air combat engagement database [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727538-727538. |
[9] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[10] | Weishi CHEN, Jia LIU, Qingbin WANG, Xianfeng LU, Jie ZHANG, Xiaolong CHEN, Yifeng HUANG. Review on technology of bird detection with weather radar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26781-026781. |
[11] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[12] | Miaodong ZHAO, Dianyin HU, Jianxing MAO, Haihe SUN, Shiyong QIN, Yuanxing GU, Rongqiao WANG, Tengyue TIAN, Lin YAN, Zhixing XIAO. Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228320-228320. |
[13] | Yiming LIANG, Guangning LI, Min XU. Method for numerical virtual flight with intelligent control based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128098-81280986. |
[14] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
[15] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341