ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (4): 126807-126807.doi: 10.7527/S1000-6893.2022.26807
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Ziyi WANG1, Weiwei ZHANG2, Lei LIU1(), Xiaofeng YANG1
Received:
2021-12-10
Revised:
2022-01-20
Accepted:
2022-02-25
Online:
2023-02-25
Published:
2022-03-22
Contact:
Lei LIU
E-mail:leiliu@cardc.cn
Supported by:
CLC Number:
Ziyi WANG, Weiwei ZHANG, Lei LIU, Xiaofeng YANG. Reduced order aerothermoelastic framework suitable for complex flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126807-126807.
1 | HARSHA P, KEEL L, CASTROGIOVANNI A, et al. X-43A vehicle design and manufacture[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
2 | HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
3 | 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 139-153. |
GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 139-153 (in Chinese). | |
4 | 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014. |
LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development center, 2014 (in Chinese). | |
5 | 王梓伊, 张伟伟, 刘磊. 高超声速飞行器热气动弹性仿真计算方法综述[J]. 气体物理, 2020, 5(6): 1-15. |
WANG Z Y, ZHANG W W, LIU L. Review of simulation methods of hypersonic aerothermoelastic problems[J]. Physics of Gases, 2020, 5(6): 1-15 (in Chinese). | |
6 | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844. |
GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844 (in Chinese). | |
7 | ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10): 34–43. |
8 | MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. |
9 | ERICSSON L E, ALMROTH B O, BAILIE J A. Hypersonic aerothennoelastic characteristics of a finned missile[J]. Journal of Spacecraft and Rockets, 1979, 16(3): 187-192. |
10 | CULLER A, MCNAMARA J. Fluid-thermal-structural modeling and analysis of hypersonic structures under combined loading[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
11 | MILLER B A, MCNAMARA J J. Efficient fluid-thermal-structural time marching with computational fluid dynamics[J]. AIAA Journal, 2018, 56(9): 3610-3621. |
12 | 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11): 221165. |
LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 221165 (in Chinese). | |
13 | MILLER B A, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[C]∥ 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. |
14 | 张伟伟, 叶正寅. 操纵面对跨声速机翼气动弹性特性的影响[J]. 航空学报, 2007, 28(2): 257-262. |
ZHANG W W, YE Z Y. Effect of control surface on aeroelastic characteristics of transonic airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 257-262 (in Chinese). | |
15 | ZHANG W W, YE Z Y. Reduced-order-model-based flutter analysis at high angle of attack[J]. Journal of Aircraft, 2007, 44(6): 2086-2089. |
16 | ZHANG W W, YE Z Y. Control law design for transonic aeroservoelasticity[J]. Aerospace Science and Technology, 2007, 11(2-3): 136-145. |
17 | GAO C Q, ZHANG W W, LI X T, et al. Mechanism of frequency lock-in in transonic buffeting flow[J]. Journal of Fluid Mechanics, 2017, 818: 528-561. |
18 | GAO C Q, ZHANG W W, KOU J Q, et al. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017, 824: 312-351. |
19 | KOU J Q, ZHANG W W. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity[J]. Journal of Fluids and Structures, 2017, 68: 174-193. |
20 | KOU J Q, ZHANG W W. A hybrid reduced-order framework for complex aeroelastic simulations[J]. Aerospace Science and Technology, 2019, 84: 880-894. |
21 | KOU J Q, ZHANG W W. Reduced-order modeling for nonlinear aeroelasticity with varying Mach numbers[J]. Journal of Aerospace Engineering, 2018, 31(6): 04018105.1-04018105.17. |
22 | KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology, 2017, 67: 309-326. |
23 | WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016, 54(9): 2705-2720. |
24 | LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177. |
25 | MARQUES S, BADCOCK K, KHODAPARAST H, et al. On how structural model variability influences transonic aeroelastic stability[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
26 | MARQUES S, BADCOCK K J, KHODAPARAST H H, et al. Transonic aeroelastic stability predictions under the influence of structural variability[J]. Journal of Aircraft, 2010, 47(4): 1229-1239. |
27 | ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures, 2015, 58: 254-270. |
28 | 王梓伊, 张伟伟. 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017, 38(6): 220829. |
WANG Z Y, ZHANG W W. Unsteady aerodynamic reduced-order modeling method for parameter changeable structure[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 220829 (in Chinese). | |
29 | WANG Z Y, ZHANG W W, WU X J, et al. A novel unsteady aerodynamic reduced-order modeling method for transonic aeroelastic optimization[J]. Journal of Fluids and Structures, 2018, 82: 308-328. |
30 | LI D F, ZHOU Q, CHEN G, et al. Structural dynamic reanalysis method for transonic aeroelastic analysis with global structural modifications[J]. Journal of Fluids and Structures, 2017, 74: 306-320. |
31 | MICHOPOULOS J G, FARHAT C, FISH J. Modeling and simulation of multiphysics systems[J]. Journal of Computing and Information Science in Engineering, 2005, 5(3): 198-213. |
32 | GIMENEZ G, ERRERA M, BAILLIS D, et al. A coupling numerical methodology for weakly transient conjugate heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2016, 97: 975-989. |
33 | 小约翰·D·安德森.高超声速和高温气体动力学[M]. 2版. 杨永,李栋,译.北京: 航空工业出版社, 2013. |
ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed.YANG Y, LI D,translated. Beijing: Aviation Industry Press, 2013 (in Chinese). |
[1] | Guoqiang LI, Kuihui SONG, Chen QIN, Guangyin ZHAO, Linxin WU, Yongdong YANG. Test on active control of airfoil dynamic stall based on trailing edge flap [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128699-128699. |
[2] | Guiwei ZHANG, Zhaoqing LIU, Lei ZHU, Heng ZHANG, Wei TIAN, Weiguang LI, Zhichun YANG. Research progress of ground flutter simulation test technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 29229-029229. |
[3] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[4] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[5] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[6] | Shijie YU, Xinghua ZHOU, Rui HUANG. Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227346-227346. |
[7] | Weijia LIU, Yingkun LI, Xiong CHEN, Chunlei LI. Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127085-127085. |
[8] | Haoyuan REN, Yi WANG, Liang WANG, Jianbo ZHOU, Hanjiang CHANG, Yipeng CAI, Bao LEI, Weiqun ZHANG. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227927-227927. |
[9] | WANG Xinjiang, LIU Ziqiang, GUO Li, FU Zhichao, LYU Jinan. Analysis method for flutter mode indicator based on principle of work and power [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224920-224920. |
[10] | SHEN Ennan, GUO Tongqing, WU Jiangpeng, HU Jialiang, ZHANG Guijiang. Full-time coupling method and application of a hypersonic all-movable wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525773-525773. |
[11] | CHEN Zhiqiang, LIU Zhanhe, MIAO Nan, FENG Wei. Parametric reduced-order model of unsteady aerodynamics based on incremental learning algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 125103-125103. |
[12] | GAO Chang, LI Zhengzhou, HUANG Jiangtao, HE Yuanyuan, WU Yingchuan, LE Jialing, GUI Feng. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124490-124490. |
[13] | LEI Pengxuan, YU Li, CHEN Dehua, LYU Binbin. Influence of flight control law on body freedom flutter characteristics: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124378-124378. |
[14] | REN Feng, GAO Chuanqiang, TANG Hui. Machine learning for flow control: Applications and development trends [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524686-524686. |
[15] | DONG Leiting, ZHOU Xuan, ZHAO Fubin, HE Shuangxin, LU Zhiyuan, FENG Jianmin. Key technologies for modeling and simulation of airframe digital twin [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 23981-023981. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341