1 |
ZHAO X, YIN Z C, ZHANG B, et al. Experimental investigation of surface temperature non-uniformity in spray cooling[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118819.
|
2 |
MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5-6): 635-657.
|
3 |
BAI L Z, FU J W, LIN G P, et al. Quiet power-free cooling system enabled by loop heat pipe[J]. Applied Thermal Engineering, 2019, 155: 14-23.
|
4 |
AMBIRAJAN A, ADONI A A, VAIDYA J S, et al. Loop heat pipes: A review of fundamentals, operation, and design[J]. Heat Transfer Engineering, 2012, 33(4-5): 387-405.
|
5 |
WANG H F, LIN G P, BAI L Z, et al. Comparative study of two loop heat pipes using R134a as the working fluid[J]. Applied Thermal Engineering, 2020, 164: 114459.
|
6 |
宁献文, 李劲东, 王玉莹, 等. 中国航天器新型热控系统构建进展评述[J]. 航空学报, 2019, 40(7): 022874.
|
|
NING X W, LI J D, WANG Y Y, et al. Review on construction of new spacecraft thermal control system in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 022874 (in Chinese).
|
7 |
CHANG S N, SU Q, SONG M J. An advanced thermal control technique for aircraft anti-icing/de-icing based on loop heat pipes[M]∥ Advanced analytic and control techniques for thermal systems with heat exchangers. Amsterdam: Elsevier, 2020: 337-366.
|
8 |
向艳超, 侯增祺, 张加迅. 环路热管技术(LHP)的发展现状[J]. 工程热物理学报, 2004, 25(4): 682-684.
|
|
XIANG Y C, HOU Z Q, ZHANG J X. The state-of-the-art of loop heat pipe[J]. Journal of Engineering Thermophysics, 2004, 25(4): 682-684 (in Chinese).
|
9 |
ZHAO Y, CHANG S, ZHANG W, et al. Experimental research on thermal characteristics of loop heat pipe with liquid guiding holes[J]. Applied Thermal Engineering, 2016, 101: 231-238.
|
10 |
LING W S, ZHOU W, LIU R L, et al. Experimental investigation of loop heat pipe with novel interlaced microchannel condenser[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105292.
|
11 |
柏立战, 林贵平, 张红星. 重力辅助环路热管稳态运行特性的实验研究[J]. 航空学报, 2008, 29(5): 1112-1117.
|
|
BAI L Z, LIN G P, ZHANG H X. Experimental study on steady-state operating characteristics of gravity-assisted loop heat pipes[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1112-1117 (in Chinese).
|
12 |
凤健婷, 林贵平, 柏立战. 双储液器环路热管稳态运行特性的实验研究[J]. 航空学报, 2010, 31(8): 1558-1564.
|
|
FENG J T, LIN G P, BAI L Z. Experimental investigation on steady-state operating characteristics of a dual compensation chamber loop heat pipe[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1558-1564 (in Chinese).
|
13 |
WANG H F, LIN G P, BAI L Z, et al. Comparative study of two loop heat pipes using R134a as the working fluid[J]. Applied Thermal Engineering, 2020, 164: 114459.
|
14 |
SIEDEL B, SARTRE V, LEFÈVRE F. Literature review: Steady-state modelling of loop heat pipes[J]. Applied Thermal Engineering, 2015, 75: 709-723.
|
15 |
ZHANG Q D, LIN G P, SHEN X B, et al. Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe[J]. Applied Thermal Engineering, 2020, 164: 114472.
|
16 |
KU J, OTTENSTEIN L, KAYA T, et al. Testing of a loop heat pipe subjected to variable accelerating forces, part 1: Start-up[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International,2000.
|
17 |
KU J, OTTENSTEIN L, KAYA T, et al. Testing of a loop heat pipe subjected to variable accelerating forces, part 2: Temperature stability[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2000.
|
18 |
FLEMING A, THOMAS S, YERKES K. Titanium-water loop heat pipe operating characteristics under standard and elevated acceleration fields[C]∥ 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
|
19 |
YERKES K L, SCOFIELD J D, COURSON D L, et al. Steady-periodic acceleration effects on the performance of a loop heat pipe[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(3): 440-454.
|
20 |
XIE Y Q, ZHOU Y, WEN D S, et al. Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces[J]. Applied Thermal Engineering, 2018, 130: 169-184.
|
21 |
XIE Y Q, LI X Y, DONG S J, et al. Experimental investigation on operating behaviors of loop heat pipe with thermoelectric cooler under acceleration conditions[J]. Chinese Journal of Aeronautics, 2020, 33(3): 852-860.
|
22 |
XIE Y Q, LI X Y, HAN L Z, et al. Experimental study on operating characteristics of a dual compensation chamber loop heat pipe in periodic acceleration fields[J]. Applied Thermal Engineering, 2020, 176: 115419.
|
23 |
HAN L Z, XIE Y Q, ZHU J Q, et al. Experimental and analytical study of dual compensation chamber loop heat pipe under acceleration force assisted condition[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119615.
|
24 |
MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
|
25 |
ZHOU L, QU Z G, CHEN G, et al. One-dimensional numerical study for loop heat pipe with two-phase heat leak model[J]. International Journal of Thermal Sciences, 2019, 137: 467-481.
|
26 |
LOCKHART R W, MARTINILLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48.
|
27 |
CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778.
|
28 |
LIN G P, ZHANG H X, SHAO X G, et al. Development and test results of a dual compensation chamber loop heat pipe[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4): 825-834.
|