[1] 马付良, 曾志翔, 高义民, 等. 仿生表面减阻的研究现状与进展[J]. 中国表面工程, 2016, 29(1):7-15. MA F L, ZENG Z X, GAO Y M, et al. Research status and progress of bionic surface drag reduction[J]. China Surface Engineering, 2016, 29(1):7-15(in Chinese). [2] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524(in Chinese). [3] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2):221-234. LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234(in Chinese). [4] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [5] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016(in Chinese). [6] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1):477-508. [7] CAI S Z, ZHOU S C, XU C, et al. Dense motion estimation of particle images via a convolutional neural network[J]. Experiments in Fluids, 2019, 60(4):16. [8] ZHU L, ZHANG W, KOU J, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Phys Fluids, 2019, 31(1):015105. [9] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1):357-377. [10] VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[DB/OL]. arXiv preprint:190809885,2019. [11] REN F, HU H B, TANG H. Active flow control using machine learning:A brief review[J]. Journal of Hydrodynamics, 2020, 32(2):247-253. [12] RABAULT J, REN F, ZHANG W, et al. Deep reinforcement learning in fluid mechanics:A promising method for both active flow control and shape optimization[J]. Journal of Hydrodynamics, 2020, 32(2):234-246. [13] 陈刚, 李跃明, 闫桂荣, 等. 基于降阶模型的气动弹性主动控制律设计[J]. 航空学报, 2010, 31(1):12-18. CHEN G, LI Y M, YAN G R, et al. Design of active control law for aeroelastic systems via reduced order models[J]. Acta Aeronautica et Aeronautica Sinica, 2010, 31(1):12-18(in Chinese). [14] AHUJA S, ROWLEY C W. Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators[J]. Journal of Fluid Mechanics, 2010, 645:447-478. [15] FLINOIS T L B, MORGANS A S. Feedback control of unstable flows:a direct modelling approach using the eigensystem realisation algorithm[J]. Journal of Fluid Mechanics, 2016, 793:41-78. [16] GAO C Q, ZHANG W W. Transonic aeroelasticity:A new perspective from the fluid mode[J]. Progress in Aerospace Sciences, 2020, 113:100596. [17] GAO C, ZHANG W W, KOU J, et al. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017, 824:312-351. [18] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10):2418-2429. [19] LIU H J, HU H Y, ZHAO Y H, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations[J]. Journal of Fluids and Structures, 2014, 49:728-741. [20] ZHANG W W, WANG B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5):1019-1028. [21] MANNARINO A, MANTEGAZZA P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks[J]. Journal of Fluids and Structures, 2014, 48:103-121. [22] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016,54(9):2705-2720. [23] HUANG R, HU H Y, ZHAO Y. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems[J]. AIAA Journal, 2014, 52(6):1219-1231. [24] KOU J, ZHANG W W, YIN M. Novel Wiener models with a time-delayed nonlinear block and their identification[J]. Nonlinear Dynamics, 2016, 85(4):2389-2404. [25] MANNARINO A, DOWELL E H. Reduced-order models for computational-fluid-dynamics-based nonlinear aeroelastic problems[J]. AIAA Journal, 2015, 53(9):2671-2685. [26] KOU J, ZHANG W W. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity[J]. Journal of Fluids and Structures, 2017, 68:174-193. [27] KOU J, ZHANG W. A hybrid reduced-order framework for complex aeroelastic simulations[J]. Aerospace science and technology, 2019, 84:880-894. [28] LI K, KOU J, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-77. [29] HAN R, WANG Y, ZHANG Y, et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Phys Fluids, 2019, 31(12):127101. [30] WU H, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198:104393. [31] KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. Cambridge:MIT Press, 1992. [32] NOACK B, PONS-PRATS J, PERIAUX J, et al. Turbulent separated shear flow control by surface plasma actuator:Experimental optimization by genetic algorithm approach[J]. Experiments in Fluids, 2016, 57:22. [33] MINELLI G, DONG T, NOACK B, et al. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization[J]. Journal of Fluid Mechanics, 2020, 893:A1. [34] NAGARAJ B, MURUGANANTH N. A comparative study of PID controller tuning using GA, EP, PSO and ACO[C]//Proceedings of the 2010 International Conference On Communication Control And Computing Technologies, 2010. [35] GAUTIER N, AIDER J L, DURIEZ T, et al. Closed-loop separation control using machine learning[J]. Journal of Fluid Mechanics, 2015, 770:442-457. [36] PAREZANOVIĆ V, LAURENTIE J C, FOURMENT C, et al. Mixing layer manipulation experiment from open-loop forcing to closed-loop machine learning control[J]. Flow Turbulence and Combustion, 2015, 94(1):155-173. [37] PAREZANOVIĆ V, CORDIER L, SPOHN A, et al. Frequency selection by feedback control in a turbulent shear flow[J]. Journal of Fluid Mechanics, 2016, 797:247-283. [38] LI R Y, NOACK B R, CORDIER L, et al. Drag reduction of a car model by linear genetic programming control[J]. Experiments in Fluids, 2017, 58:103. [39] ZHOU Y, FAN D, ZHANG B, et al. Artificial intelligence control of a turbulent jet[DB/OL]. arXiv preprint:200504650,2020. [40] WU Z, FAN D W, ZHOU Y, et al. Jet mixing optimization using machine learning control[J]. Experiments in Fluids, 2018, 59:131. [41] REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Phys Fluids, 2019, 31(9):093601. [42] ABIODUN O I, JANTAN A, OMOLARA A E, et al. State-of-the-art in artificial neural network applications:A survey[J]. Heliyon, 2018, 4(11):e00938. [43] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489. [44] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676):354-359. [45] FRANÇOIS-LAVET V, HENDERSON P, ISLAM R, et al. An introduction to deep reinforcement learning[DB/OL]. arXiv preprint:181112560, 2018. [46] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [47] GU S, HOLLY E, LILLICRAP T, et al. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, 2017. [48] WANG P, CHAN C Y. Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017. [49] LUSCH B, KUTZ J N, BRUNTON S L. Deep learning for universal linear embeddings of nonlinear dynamics[J]. Nature Communications, 2018, 9:4950. [50] BRUNTON S L, NOACK B R. Closed-loop turbulence control:progress and challenges[J]. Applied Mechanics Reviews, 2015, 67(5):050801. [51] LEE C, KIM J, BABCOCK D, et al. Application of neural networks to turbulence control for drag reduction[J]. Phys Fluids, 1997, 9(6):1740. [52] CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262:75-110. [53] 许春晓. 壁湍流相干结构和减阻控制机理研究[J]. 力学进展, 2015, 45:201504. XU C X. Coherent structures and drag reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45:201504(in Chinese). [54] 杨歌. 主动凹坑变形湍流减阻控制方案研究[D]. 北京:清华大学, 2009. YANG G. Study on control schemes for turbulence drag reduction by active dimple deformation[D]. Beijing:Tsinghua University, 2009(in Chinese). [55] 侯宏, 杨建华. RBF网络用于边界层转捩中抽吸流优化控制[J]. 航空学报, 2002, 23(6):556-559. HOU H, YANG J H. Plant edentification in active control of laminar boundary layer transition by suction using RBF neural network[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6):556-559(in Chinese). [56] RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865:281-302. [57] RABAULT J, KUHNLE A. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach[J]. Phys Fluids, 2019, 31(9):094105. [58] TANG H, RABAULT J, KUHNLE A, et al. Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning[J]. Phys Fluids, 2020, 32(5):053605. [59] REN F, RABAULT J, TANG H. Applying deep reinforcement learning to active flow control in turbulent conditions[DB/OL]. arXiv preprint:2006.10683, 2020. [60] REN F, TANG H. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth[DB/OL]. arXiv preprint:2010.10429, 2020. [61] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2000, 32(1):709-778. [62] LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42:335-364. [63] BEINTEMA G, CORBETTA A, BIFERALE L, et al. Controlling rayleigh-bénard convection via reinforcement learning[DB/OL]. arXiv preprint:200314358, 2020. [64] CICHOS F, GUSTAVSSON K, MEHLIG B, et al. Machine learning for active matter[J]. Nature Machine Intelligence, 2020, 2(2):94-103. [65] REDDY G, CELANI A, SEJNOWSKI T J, et al. Learning to soar in turbulent environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33):E4877-E4884. [66] VERMA S, NOVATI G, KOUMOUTSAKOS P. Efficient collective swimming by harnessing vortices through deep reinforcement learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23):5849-5854. [67] COLABRESE S, GUSTAVSSON K, CELANI A, et al. Flow navigation by smart microswimmers via reinforcement learning[J]. Physical Review Letters, 2017, 118(15):158004. [68] POGGIO T, MHASKAR H, ROSASCO L, et al. Why and when can deep-but not shallow-networks avoid the curse of dimensionality:A review[J]. International Journal of Automation and Computing, 2017, 14(5):503-519. |