[1] 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1):1-27. HU H Y, ZHAO Y H, HUANG R. Studies on aeroelastic analysis and control of aircraft structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):1-27(in Chinese). [2] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2):51-117. [3] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-701(in Chinese). [4] 任峰,高传强,唐辉.机器学习在流动控制领域的应用及发展趋势[J].航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:applications and trends[J].Acta Aeronautica et Astronautica Sinica,2021,42(4):524686(in Chinese). [5] NOACK B R, AFANASIEV K, MORZYN'SKI M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake[J]. Journal of Fluid Mechanics, 2003, 497:335-363. [6] HU J W, LIU H R, WANG Y G, et al. Reduced order model for unsteady aerodynamic performance of compressor cascade based on recursive RBF[J]. Chinese Journal of Aeronautics, 2021, 34(4):341-351. [7] PROCTOR J L, BRUNTON S L, KUTZ J N. Dynamic mode decomposition with control[DB/OL]. arXiv preprint:1409.6358,2014. [8] BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15):3932-3937. [9] ROWLEY C W, MEZIC' I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127. [10] SILVA W A, BARTELS R E. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[J]. Journal of Fluids and Structures, 2004, 19(6):729-745. [11] YAO W, MARQUES S. Prediction of transonic limit-cycle oscillations using an aeroelastic harmonic balance method[J]. AIAA Journal, 2015, 53(7):2040-2051. [12] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016, 54(9):2705-2720. [13] LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-2177. [14] SUN Z W, WANG C, ZHENG Y, et al. Non-intrusive reduced-order model for predicting transonic flow with varying geometries[J]. Chinese Journal of Aeronautics, 2020, 33(2):508-519. [15] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3):659-668. [16] 陈森林, 高正红, 朱新奇, 等. 非稳定动态过程非定常气动力建模[J]. 航空学报, 2020, 41(8):123675. CHEN S L, GAO Z H, ZHU X Q, et al. Unsteady aerodynamic modeling of unstable dynamic process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):123675(in Chinese). [17] SCHILDERS W H A, VAN DER VORST H A, ROMMES J. Model order reduction:theory, research aspects and applications[M]. Berlin:Springer, 2008. [18] HUANG R, LIU H J, YANG Z J, et al. Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems[J]. AIAA Journal, 2018, 56(9):3718-3731. [19] KLOCK R J, CESNIK C E S. Nonlinear thermal reduced-order modeling for hypersonic vehicles[J]. AIAA Journal, 2017, 55(7):2358-2368. [20] YANG C, LIANG K, RONG Y F, et al. A hybrid reduced-order modeling technique for nonlinear structural dynamic simulation[J]. Aerospace Science and Technology, 2019, 84:724-733. [21] YANG Z J, HUANG R, LIU H J, et al. An improved nonlinear reduced-order modeling for transonic aeroelastic systems[J]. Journal of Fluids and Structures, 2020, 94:102926. [22] 张伟伟, 高传强, 叶正寅. 复杂跨声速气动弹性现象及其机理分析[J]. 科学通报, 2018, 63(12):1095-1110. ZHANG W W, GAO C Q, YE Z Y. The complex transonic aeroelastic phenomena and it's mechanisms[J]. Chinese Science Bulletin, 2018, 63(12):1095-1110(in Chinese). [23] AMSALLEM D, FARHAT C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7):1803-1813. [24] AMSALLEM D, TEZAUR R, FARHAT C. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes[J]. Journal of Computational Physics, 2016, 326:373-397. [25] CHEN Z Q, ZHAO Y H, HUANG R. Parametric reduced-order modeling of unsteady aerodynamics for hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 87:1-14. [26] LIU H J, HU H Y, ZHAO Y H, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations[J]. Journal of Fluids and Structures, 2014, 49:728-741. [27] KOU J Q, ZHANG W W. Reduced-order modeling for nonlinear aeroelasticity with varying Mach numbers[J]. Journal of Aerospace Engineering, 2018, 31(6):04018105. [28] ZHANG W W, KOU J Q, WANG Z Y. Nonlinear aerodynamic reduced-order model for limit-cycle oscillation and flutter[J]. AIAA Journal, 2016, 54(10):3304-3311. [29] SKUJINS T, CESNIK C E S. Reduced-order modeling of unsteady aerodynamics across multiple Mach regimes[J]. Journal of Aircraft, 2014, 51(6):1681-1704. [30] LIU H J, HUANG R, ZHAO Y H, et al. Reduced-order modeling of unsteady aerodynamics for an elastic wing with control surfaces[J]. Journal of Aerospace Engineering, 2017, 30(3):04016083. [31] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016, 54(9):2705-2720. [32] LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-2177. [33] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge:Cambridge University Press, 2009. |