ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (10): 128094.doi: 10.7527/S1000-6893.2023.28094
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Sheng ZHANG1, Pan ZHOU1, Yang HE1, Jiangtao HUANG1(
), Gang LIU2, Jigang TANG1, Huaizhi JIA3, Xin DU1
Received:2022-10-08
Revised:2023-01-05
Accepted:2023-02-15
Online:2023-05-25
Published:2023-02-24
Contact:
Jiangtao HUANG
E-mail:hjtcyf@163.com
Supported by:CLC Number:
Sheng ZHANG, Pan ZHOU, Yang HE, Jiangtao HUANG, Gang LIU, Jigang TANG, Huaizhi JIA, Xin DU. Air combat maneuver decision-making test based on deep reinforcement learning[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 128094.
| 1 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
| FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
| 2 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
| SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
| 3 | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
| SUN C. Development trend of future fighter: a review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
| 4 | NICHOLS S O. 21st century air-to-air short range weapon requirementsf: AU/ACSC/210/1998-04 [R]. Alabama: Maxwell Air Force Base, 1998. |
| 5 | 董一群, 艾剑良. 自主空战技术中的机动决策:进展与展望[J]. 航空学报, 2020, 41(): 724264. |
| DONG Y Q, AI J L. Decision making in autonomous air combat: review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(Sup 2): 724264 (in Chinese). | |
| 6 | BURGIN G H. OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat [R]. Washington D. C.: NASA. 1975. |
| 7 | ISAACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[M]. New York: Wiley, 1965 |
| 8 | 薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013, 34(2): 343-351. |
| XUE Y, ZHUANG Y, ZHANG Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 343-351 (in Chinese). | |
| 9 | RODIN E Y, LIROV Y, MITTNIK S, et al. Artificial intelligence in air combat games[J]. Computers & Mathematics With Applications, 1987, 13(1-3): 261-274. |
| 10 | ERNEST N, CARROLL D. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1), doi: 10.4172/2167-0374.1000144 . |
| 11 | Defense Advanced Research Projects Agency. AlphaDogfight trials go virtual for final event [EB/OL]. (2020-08-07) [2021-03-10]. :. |
| 12 | POPE A P, IDE J S, MIĆOVIĆ D, et al. Hierarchical reinforcement learning for air-to-air combat[C]∥2021 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2021: 275-284. |
| 13 | 杜子亮. DARPA“空战进化”项目开启良好开端[J]. 国际航空, 2020(9): 20-22. |
| DU Z L. Good start for DARPA’s air combat evolution program[J]. International Aviation, 2020(9): 20-22 (in Chinese). | |
| 14 | 李磊, 蒋琪, 王彤. 美国DARPA空战演变项目分析[J]. 飞航导弹, 2020(4): 52-58. |
| LI L, JIANG Q, WANG T. Analysis of DARPA air combat evolution project in America[J]. Aerodynamic Missile Journal, 2020(4): 52-58 (in Chinese). | |
| 15 | 左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38(10): 321168. |
| ZUO J L, YANG R N, ZHANG Y, et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 321168 (in Chinese). | |
| 16 | 张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报(自然科学版), 2018, 19(6): 8-14. |
| ZHANG Q, YANG R N, YU L X, et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(6): 8-14 (in Chinese). | |
| 17 | 张耀中, 许佳林, 姚康佳, 等. 基于DDPG算法的无人机集群追击任务[J]. 航空学报, 2020, 41(10): 324000. |
| ZHANG Y Z, XU J L, YAO K J, et al. Pursuit missions for UAV swarms based on DDPG algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324000 (in Chinese). | |
| 18 | 施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究[J]. 自动化学报, 2021, 47(7): 1610-1623. |
| SHI W, FENG Y H, CHENG G Q, et al. Research on multi-aircraft cooperative air combat method based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(7): 1610-1623 (in Chinese). | |
| 19 | 王壮. 近距空战飞行器智能机动决策生成研究[D]. 成都: 四川大学, 2021. |
| WANG Z. Research on intelligent maneuver decision generation of within visual range air combat[D]. Chengdu: Sichuan University, 2021 (in Chinese). | |
| 20 | 周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报, 2023, 44(4): 126731. |
| ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision and simulation based on deep reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126731 (in Chinese). | |
| 21 | 符小卫, 徐哲, 朱金冬, 等. 基于PER-MATD3的多无人机攻防对抗机动决策研究[J]. 航空学报, doi: 10.7527/S1000-6893.2022.27083 . |
| FU X W, XU Z, ZHU J D, et al. Research on maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/S1000-6893.2022.27083 (in Chinese). | |
| 22 | 高飞. 人工智能持续推进DARPA“空战演进”项目将迎来新进展[N]. 中国航空报, 2021-08-31(A09). |
| GAO F. Continuous promotion of artificial intelligence, DARPA “Air Combat Evolution” project will usher in new progress [N]. China Aviation News, 2021-08-31(A09)(in Chinese). | |
| 23 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
| YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
| 24 | 吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005: 8-13. |
| WU S T, FEI Y H. Flight control[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 8-13 (in Chinese). | |
| 25 | 王栋, 寇雅楠, 胡涛. 智能空战对抗训练关键技术研究[M]. 北京: 电子工业出版社, 2021. |
| WANG D, KOU Y N, HU T. Research on key technologies of intelligent air combat countermeasure training[M]. Beijing: Publishing House of Electronics Industry, 2021 (in Chinese). | |
| 26 | 李银通, 韩统, 孙楚, 等. 基于逆强化学习的空战态势评估函数优化方法[J]. 火力与指挥控制, 2019, 44(8): 101-106. |
| LI Y T, HAN T, SUN C, et al. An optimization method of air combat situation assessment function based on inverse reinforcement learning[J]. Fire Control & Command Control, 2019, 44(8): 101-106 (in Chinese). | |
| 27 | 赵冬斌, 邵坤, 朱圆恒, 等. 深度强化学习综述: 兼论计算机围棋的发展[J]. 控制理论与应用, 2016, 33(6): 701-717. |
| ZHAO D B, SHAO K, ZHU Y H, et al. Review of deep reinforcement learning and discussions on the development of computer Go[J]. Control Theory & Applications, 2016, 33(6): 701-717 (in Chinese). | |
| 28 | SILVER D. Tutorial: Deep reinforcement learning, Google DeepMind, 2020[R/OL]. [2022-10-31].. . |
| 29 | FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. prepint arXiv: , 2018. |
| 30 | SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay [DB/OL]. prepint arXiv: arXiv: , 2015. |
| 31 | 钟友武, 柳嘉润, 杨凌宇, 等. 自主近距空战中机动动作库及其综合控制系统[J]. 航空学报, 2008, 29(): 114-121. |
| ZHONG Y W, LIU J R, YANG L Y, et al. Maneuver library and integrated control system for autonomous close-in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(Sup 1): 114-121 (in Chinese). | |
| 32 | STEVENS B L, LEWIS F L, JOHNSON E N. Aircraft control and simulation: Dynamics, controls design, and autonomous systems[M]. 3rd ed. New York: Wiley-Blackwell, 2015. |
| [1] | Kaifang WAN, Zhilin WU, Yunhui WU, Haozhi QIANG, Yibo WU, Bo LI. Cooperative location of multiple UAVs with deep reinforcement learning in GPS-denied environment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331024-331024. |
| [2] | Lingfeng JIANG, Xinkai LI, Hai ZHANG, Hanwei LI, Hongli ZHANG. Mapless navigation of UAVs in dynamic environments based on an improved TD3 algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331035-331035. |
| [3] | Qing WANG, Fengqi ZHENG, Di DING, Xi YUE. Aerodynamic coefficient identification method based on noise statistics estimation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130920-130920. |
| [4] | Henghui LI, Qianhui LIN, Taofeng HAN, Yang HE. Close-range air combat model based on energy maneuverability and its applications [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 330863-330863. |
| [5] | Zhiqiang WAN, Shanshan ZHANG, Xiaozhe WANG, Liang MA, Ao XU, Zhigang WU, Chao YANG. Maneuver load analysis and alleviation technology of flexible aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30279-030279. |
| [6] | Min YANG, Guanjun LIU, Ziyuan ZHOU. Control of lunar landers based on secure reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630553-630553. |
| [7] | Yugang ZHANG, Zhe YANG, Senpeng HE, Wenqing YANG. Aircraft attitude prediction model based on physical information neural networks [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531850-531850. |
| [8] | Jialiang HU, Jiangpeng WU, Sixu HUO, Yidi GAO, Hua ZHENG. Modal parameter estimation based on reconstruction of digital twin sweep data in flutter flight test [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531602-531602. |
| [9] | Chen WANG, Caisheng WEI, Zeyang YIN, Kai JIN, Xingchen LI. Collaborative planning of multi-UAV trajectories and communication strategies considering channel resource constraints [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331837-331837. |
| [10] | Yu WANG, Zhipeng XIE, Yongjian TIAN, Guanglei MENG. Distributed UAV formation control with virtual structure guided reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 331354-331354. |
| [11] | Wei CHEN, Lulu LI, Dong CHEN, Shaohui ZHANG, Yafei LI, Ke WANG, Yuanyuan JIN, Mingliang XU. Multi-aircraft cooperative decision-making methods driven by differentiated support demands for carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531274-531274. |
| [12] | Xudong CHEN, Qiqi CHEN, Yizhe LUO, Jiabao WANG, Mingliang XU. Dynamic parallel scheduling of heterogeneous carrier-based aircraft deck support operations [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531329-531329. |
| [13] | Zheng WANG, Hua WANG, Keke CUI, Chaochao LI, Junnan LIU, Mingliang XU. Locally guided reinforcement learning for autonomous dispatching of carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531333-531333. |
| [14] | Wenhui LING, Chunhui MU, Lingcong NIE, Xian DU, Ximing SUN. Improved DDPG-based multipoint pressure distribution control of variable geometry scramjet combustor at wide range velocities [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 131092-131092. |
| [15] | Kun MAO, Wuxing JING, Shi CHEN, Jun LIU, Dawei WU, Jiangtao SI. Research and verification of rigid-elastic coupling analysis technology for large passenger aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 130972-130972. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

