[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4):44-50. ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4):44-50(in Chinese). [2] 丁文锋,奚欣欣,占京华,等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese). [3] MOLINARI A, STRAFFELINI G, TESI B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy[J]. Wear, 1997, 208(1-2):105-112. [4] QIU M, ZHANG Y Z, YANG J H, et al. Microstructure and tribological characteristics of Ti-6Al-4V alloy against GCr15 under high speed and dry sliding[J]. Materials Science and Engineering A, 2006, 434(1):71-75. [5] REVANKAR G D, SHETTY R, RAO S S, et al. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process[J]. Journal of Materials Research and Technology, 2017, 6(1):13-32. [6] MATSUURA K, KUDOH M. Surface modification of titanium by a diffusional carbo-nitriding method[J]. Acta Materialia, 2002, 50(10):2693-2700. [7] FENG X G, ZHANG K F, ZHOU H, et al. Characterization of Ti6Al4V alloy with N+C, Ti+N and Ti+C ion implantation[J]. Rare Metal Materials and Engineering, 2019, 48(5):1447-1453. [8] 姬寿长,李争显,杜继红,等. Ti6Al4V合金表面超音速火焰喷涂WC-12Co涂层组织及相分析[J]. 稀有金属材料与工程, 2012, 41(11):2005-2009. JI S C, LI Z X, DU J H, et al. Microstructure and phase analysis of WC-12Co coatings sprayed on Ti6Al4V alloy by HVOF[J]. Rare Metal Materials and Engineering, 2012, 41(11):2005-2009(in Chinese). [9] 李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响[J]. 金属热处理, 2019, 44(8):73-77. LI W H. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets[J]. Heat Treatment of Metals, 2019, 44(8):73-77(in Chinese). [10] 刘海. SiBCN陶瓷与TC4钛合金的钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2016. LIU H. Research on processing and mechanism of brazing SiBCN ceramics and TC4 titanium alloy[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese). [11] MAN H C, ZHANG S, CHENG F T, et al. Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding[J]. Scripta Materialia, 2001, 44(12):2801-2807. [12] FAN H M, LIU H Q, REN J, et al. Microstructural characteristics and wear properties of NiCr/Cr3C2-WS2 self-lubricant wear-resistant composite coating on Ti6Al4V by laser cladding[J]. Applied Mechanics and Materials, 2013, 395-396(2013):814-817. [13] TIAN Y S, CHEN C Z, CHEN L X, et al. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique[J]. Scripta Materialia, 2006, 54(5):847-852. [14] 张光耀,王成磊,高原,等. 铝合金表面激光熔覆CeO2+Ni60A熔覆层的组织及耐磨性[J]. 稀有金属材料与工程, 2015, 44(5):1229-1233. ZHANG G Y, WANG C L, GAO Y, et al. Microstructure and wear resistance of CeO2 +Ni60A composite coating on aluminum alloys by laser cladding[J]. Rare Metal Materials and Engineering, 2015, 44(5):1229-1233(in Chinese). [15] LIU Y N, SUN R L, NIU W, et al. Effects of CeO2 on microstructure and properties of TiC/Ti2Ni reinforced Ti-based laser cladding composite coatings[J]. Optics and Lasers in Engineering, 2019, 120:84-94. [16] 刘頔,李敏,黄坚,等. CeO2含量对激光熔覆TiB/TiN涂层显微组织和性能的影响[J]. 中国激光, 2017, 44(12):1202009. LIU D, LI M, HUANG J, et al. Effect of CeO2 content on microstructure and properties of TiB/TiN coating by laser cladding[J]. Chinese Journal of Lasers, 2017, 44(12):1202009(in Chinese). [17] 赵卫民,赫庆坤,韩彬,等. TiC-NiCrBSi复合材料的激光熔覆成形性分析[J]. 焊接学报, 2010, 31(6):25-28, 32. ZHAO W M, HE Q K, HAN B, et al. Formation of laser cladding layer of TiC-NiCrBSi composites[J]. Transactions of the China Welding Institution, 2010, 31(6):25-28, 32(in Chinese). [18] 刘文今,曾大本,黄惠松. 稀土金属氧化物涂层对铸铁激光强化区组织和性能的影响[J]. 中国激光, 1992, 19(8):613-617. LIU W J, ZENG D B, HUANG H S. Influence of rare-earth metal oxide coating on the structure and properties of laser strengthened area of cast iron[J]. Chinese Journal of Lasers, 1992, 19(8):613-617(in Chinese). [19] 赵玉珍,史耀武. 表面活性元素硫对焊接熔池中流体流动方式和熔池深宽比的影响[J]. 钢铁研究学报, 2004, 16(4):7-10. ZHAO Y Z, SHI Y W. Effect of surface-active element sulfur on flow pattern and aspect ratio of weld pool[J]. Journal of Iron and Steel Research, 2004, 16(4):7-10(in Chinese). [20] 陈静,张凤英,谭华,等. 激光多层熔覆沉积预混合Ti-xAl-yV合金粉末在熔池中的熔化与偏析行为[J]. 中国激光, 2010, 37(8):2154-2159. CHEN J, ZHANG F Y, TAN H, et al. Alloying mechanics in moving melt pool during laser solid forming from blended elemental powders[J]. Chinese Journal of lasers, 2010, 37(8):2154-2159(in Chinese). [21] YU S M, LIU D X, ZHANG X H, et al. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy[J]. Applied Surface Science, 2015, 353:995-1002. [22] LIPATNIKOV V N, REMPEL A A, GUSEV A I. Atomic ordering and hardness of nonstoichiometric titanium carbide[J]. International Journal of Refractory Metals and Hard Materials, 1997, 15(1-3):61-64. [23] 金云学,曾松岩,张二林,等. TiC/Ti合金中共晶TiC形态的形成机制研究[J]. 稀有金属材料与工程, 2003, 32(06):451-455. JIN Y X, ZENG S Y, ZHANG E L, et al. Forming mechanism of morphologies of eutectic TiC in TiC/Ti alloys[J]. Rare Metal Materials and Engineering, 2003, 32(6):451-455(in Chinese). [24] 吕维洁,杨志峰,张荻,等. 原位合成钛基复合材料增强体TiC的微结构特征[J]. 中国有色金属学报, 2002, 12(3):511-515. LV W J, YANG Z F, ZHANG D, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3):511-515(in Chinese). [25] 陈帅,陶凤和,贾长治. 选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究[J]. 中国激光, 2019, 046(1):102007. CHEN S, TAO F H, JIA C Z. Microstructure and micro-hardness of 4Cr5MoSiV1 die steels fabricated by selective laser melting[J]. Chinese Journal of lasers, 2019, 046(1):102007(in Chinese). [26] WEI D B, ZHANG P Z, YAO Z J, et al. Oxidation of double-glow plasma chromising coating on TC4 titanium alloys[J]. Corrosion Science, 2013, 66:43-50. [27] 吴晓东,杨冠军,葛鹏,等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008, 25(5):1-6. WU X D, YANG G J, GE P, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008, 25(5):1-6(in Chinese). [28] ZHANG S, WU W, WANG M C, et al. Laser induced TiC particle reinforced composite layer on Ti6Al4V and their microstructural characteristics[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(1):6-9. [29] 王海燕,高雪云,任慧平,等. 稀土Ce在α-Fe中占位倾向与作用机理的密度泛函理论研究[J]. 稀有金属材料与工程, 2014, 43(11):2739-2742. WANG H Y, GAO X Y, REN H P, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014, 43(11):2739-2742(in Chinese). [30] 张光耀,王成磊,高原,等. 稀土对6063Al镍基激光熔覆层组织及摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(3):335-341. ZHANG G Y, WANG C L, GAO Y, et al. Effect of rare earth on the microstructure and tribological properties of laser cladding Ni-based coatings on 6063 Al[J]. Tribology, 2015, 35(3):335-341(in Chinese). [31] 赵勋. 原位自生TiC增强钛基复合材料的制备与性能研究[D]. 北京:北京交通大学, 2019. ZHAO X. Preparation and properties of in-situ TiC reinforced titanium matrix composites[D]. Beijing:Beijing Jiaotong University, 2019(in Chinese). [32] 潘博,黄怡晨,李俐群,等. 多次激光修复对ZTC4钛合金组织与硬度的影响[J]. 中国激光, 2019, 46(10):1002011. PAN B, HUANG Y C, LI L Q, et al. Effects of multiple laser repairs on microstructure and hardness of ZTC4 titanium alloy[J]. Chinese Journal of Lasers, 2019, 46(10):1002011(in Chinese). [33] VASANTHAKUMAR K, KARTHISELVA N S, CHAWAKE N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J]. Journal of Alloys and Compounds, 2017, 709(2017):829-841. [34] 张秉刚,王廷,陈国庆,等. TC21钛合金电子束焊缝精细组织及其对硬度的影响[J]. 中国有色金属学报, 2010, 20(S1):829-832. ZHANG B G, WANG T, CHEN G Q, et al. Fine microstructure and its effect on hardness of electron beam welding joint of TC21 Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):829-832(in Chinese). [35] 吴欢,赵永庆,葛鹏,等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012, 41(5):805-810. WU H, ZHAO Y Q, GE P, et al. Effect of β stabilizing elements on the strengthening behavior of titanium α phase[J]. Rare Metal Materials and Engineering, 2012, 41(5):805-810(in Chinese). [36] GARDOS M N. Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (Ti<i>nO2n-1)[J]. Tribology Letters, 2000, 8(2-3):79-96. [37] GURAPPA I. Protection of titanium alloy components against high temperature corrosion[J]. Materials Science and Engineering A (Structural Materials:Properties, Microstructure and Processing), 2003, A356:372-380. [38] 吴小红,罗军明,黄俊,等. 微波烧结TiC/Ti6Al4V复合材料的高温氧化行为[J]. 复合材料学报, 2017, 34(1):135-141. WU X H, LUO J M, HUANG J, et al. High temperature oxidation behavior of microwave sintering TiC/Ti6Al4V composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1):135-141(in Chinese). [39] 姚小飞,谢发勤,韩勇,等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 41(8):1463-1466. YAO X F, XIE F Q, HAN Y, et al. Effects of temperature on wear properties and friction coefficient of TC4 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(8):1463-1466(in Chinese). [40] STRAFFELINI G. Mild sliding wear of Fe-0.2%C, Ti-6%Al-4%V and Al-7072:a comparative study[J]. Tribology Letters, 2011, 41(1):227-238. [41] SONG S H, SUN H J,WANG M. Effect of rare earth cerium on brittleness of simulated welding heat-affected zones in a reactor pressure vessel steel[J]. Journal of Rare Earths, 2015, 33(11):1204-1211. [42] 匡建新,汪新衡,刘安民,等. 稀土对激光熔覆金属陶瓷复合层的影响[J]. 润滑与密封, 2007, 32(6):87-89. KUANG J X, WANG X H, LIU A M, et al. Effects of CeO2 on Ni-based metal-ceramic compound coatings by laser cladding[J]. Lubrication Engineering, 2007, 32(6):87-89(in Chinese). [43] 邱明,张永振,杨建恒,等. 摩擦热对Ti6Al4V合金摩擦磨损性能的影响[J]. 摩擦学学报, 2006, 26(3):203-207. QIU M, ZHANG Y Z, YANG J H, et al. Effects of friction heat on tribological properties of Ti6Al4V alloy sliding against GCr15 steel[J]. Tribology, 2006, 26(3):203-207(in Chinese). |