ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (4): 525587.doi: 10.7527/S1000-6893.2021.25587
• Reviews • Previous Articles Next Articles
PENG Zhenlong1,2, ZHANG Xiangyu1,2, ZHANG Deyuan1,2
Received:
2021-03-29
Revised:
2021-04-22
Published:
2021-09-06
Supported by:
CLC Number:
PENG Zhenlong, ZHANG Xiangyu, ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525587.
[1] 郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11):119-134. GUO D M, SUN Y W, JIA Z Y. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134(in Chinese). [2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese). [3] ULUTAN D, OZEL T. Machining induced surface integrity in titanium and nickel alloys:A review[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3):250-280. [4] 彭艳萍, 曾凡昌, 王俊杰, 等. 国外航空钛合金的发展应用及其特点分析[J]. 材料工程, 1997, 25(10):3-6. PENG Y P, ZENG F C, WANG J J, et al. Development, application and feature of titanium alloys in foreign aviation industry[J]. Journal of Materials Engineering, 1997, 25(10):3-6(in Chinese). [5] 贾振元, 毕广健, 王福吉, 等. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23):199-208. JIA Z Y, BI G J, WANG F J, et al. The research of machining mechanism of carbon fiber reinforced plastic[J]. Journal of Mechanical Engineering, 2018, 54(23):199-208(in Chinese). [6] 康仁科, 马付建, 董志刚, 等. 难加工材料超声辅助切削加工技术[J]. 航空制造技术, 2012, 55(16):44-49. KANG R K, MA F J, DONG Z G, et al. Ultrasonic assisted machining of difficult-to-cut material[J]. Aeronautical Manufacturing Technology, 2012, 55(16):44-49(in Chinese). [7] 任军学, 张定华, 王增强, 等. 整体叶盘数控加工技术研究[J]. 航空学报, 2004, 25(2):205-208. REN J X, ZHANG D H, WANG Z Q, et al. Research on the NC machining technique of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):205-208(in Chinese). [8] 张德远. 中国的超声加工[J]. 机械工程学报, 2017, 53(19):1-2. ZHANG D Y. Ultrasonic machining in China[J]. Journal of Mechanical Engineering, 2017, 53(19):1-2(in Chinese). [9] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19):3-21. FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19):3-21(in Chinese). [10] 房善想, 赵慧玲, 张勤俭. 超声加工技术的应用现状及其发展趋势[J]. 机械工程学报, 2017, 53(19):22-32. FANG S X, ZHAO H L, ZHANG Q J. The application status and development trends of ultrasonic machining technology[J]. Journal of Mechanical Engineering, 2017, 53(19):22-32(in Chinese). [11] 张园, 康仁科, 刘津廷, 等. 超声振动辅助钻削技术综述[J]. 机械工程学报, 2017, 53(19):33-44. ZHANG Y, KANG R K, LIU J T, et al. Review of ultrasonic vibration assisted drilling[J]. Journal of Mechanical Engineering, 2017, 53(19):33-44(in Chinese). [12] 隈部淳一郎. 精密加工振动切削(基础和应用)[M]. 韩一昆, 薛万夫, 孙祥根,等,译. 北京:机械工业出版社, 1985:20-25. KUMABE J. Fundamentals and applications of precision machining vibration cutting[M]. HAN Y K, XUE W F, SUN X G, et al, translated. Beijing:China Machine Press, 1985:20-25(in Chinese). [13] BREHL D E, DOW T A. Review of vibration-assisted machining[J]. Precision Engineering, 2008, 32(3):153-172. [14] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156:103594. [15] 王立江, 张德远, 张明. 振动钻削微小孔提高加工精度的研究[J]. 机械工程学报, 1992, 28(1):31-35. WANG L J, ZHANG D Y, ZHANG M. A study on improving accuracy of drilling microvoid by vibration drilling[J]. Journal of Mechanical Engineering, 1992, 28(1):31-35(in Chinese). [16] 张德远,王立江. 振动钻削的局部断屑特性[J]. 应用科学学报, 1993, 11(4):337-344. ZHANG D Y, WANG L J. Partly chip breaking characteristic in vibration drilling[J]. Journal of Applied Sciences, 1993, 11(4):337-344(in Chinese). [17] 倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7):207-216. NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of titanium alloys[J]. Journal of Mechanical Engineering, 2019, 55(7):207-216(in Chinese). [18] 李远霄, 焦锋, 张世杰, 等. 高低频复合振动钻削CFRP/钛合金叠层结构试验[J]. 航空学报, 2021, 42(10):524802. LI Y X, JIAO F, ZHANG S J, et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524802(in Chinese). [19] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese). [20] 查慧婷, 冯平法, 张建富. 高体积分数SiCp/Al复合材料旋转超声铣磨加工的试验研究[J]. 机械工程学报, 2017, 53(19):107-113. ZHA H T, FENG P F, ZHANG J F. An experimental study on rotary ultrasonic machining of high volume fraction silicon carbide-reinforced aluminum matrix composites(SiCp/Al)[J]. Journal of Mechanical Engineering, 2017, 53(19):107-113(in Chinese). [21] 丁凯, 傅玉灿, 苏宏华, 等. 基于单颗磨粒磨削的超声振动参数与磨削参数匹配性研究[J]. 机械工程学报, 2017, 53(19):59-65. DING K, FU Y C, SU H H, et al. Study on matching performance of ultrasonic vibration and grinding parameters based on a single abrasive grinding[J]. Journal of Mechanical Engineering, 2017, 53(19):59-65(in Chinese). [22] 邵振宇, 李哲, 张德远, 等. 钛合金旋转超声辅助钻削的钻削力和切屑研究[J]. 机械工程学报, 2017, 53(19):66-72. SHAO Z Y, LI Z, ZHANG D Y, et al. Study on the thrust force and chip in rotary ultrasonic-assisted drilling of titanium alloys(Ti6Al4V)[J]. Journal of Mechanical Engineering, 2017, 53(19):66-72(in Chinese). [23] LIAO Y S, CHEN Y C, LIN H M. Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1988-1996. [24] YAO G, ZHANG D Y, GENG D X, et al. Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury[J]. Materials & Design, 2021, 201:109528. [25] YAO G, ZHANG D Y, GENG D X, et al. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration[J]. Ultrasonics, 2018, 84:126-133. [26] 刘立飞, 张飞虎, 刘民慧. 碳化硅陶瓷的超声振动辅助磨削[J]. 光学精密工程, 2015, 23(8):2229-2235. LIU L F, ZHANG F H, LIU M H. Ultrasonic assisted grinding for silicon carbide[J]. Optics and Precision Engineering, 2015, 23(8):2229-2235(in Chinese). [27] BAI W, SUN R L, LEOPOLD J, et al. Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting:Numerical modelling and experimental analysis[J]. Ultrasonics, 2017, 78:70-82. [28] SHAO Z Y, JIANG X G, GENG D X, et al. The interface temperature and its influence on surface integrity in ultrasonic-assisted drilling of CFRP/Ti stacks[J]. Composite Structures, 2021, 266:113803. [29] GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation, evaluation and suppression during drilling of composite laminates:A review[J]. Composite Structures, 2019, 216:168-186. [30] ZHANG D Y, SHAO Z Y, GENG D X, et al. Feasibility study of wave-motion milling of carbon fiber reinforced plastic holes[J]. International Journal of Extreme Manufacturing, 2021, 3(1):010401. [31] CHEN G, REN C Z, ZOU Y H, et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13. [32] GENG D X, TENG Y D, LIU Y H, et al. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes[J]. Journal of Materials Processing Technology, 2019, 270:195-205. [33] XU W X, ZHANG L C. Ultrasonic vibration-assisted machining:Principle, design and application[J]. Advances in Manufacturing, 2015, 3(3):173-192. [34] MORIWAKI T, SHAMOTO E. Ultrasonic elliptical vibration cutting[J]. CIRP Annals, 1995, 44(1):31-34. [35] MA C X, SHAMOTO E, MORIWAKI T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13):1305-1310. [36] LI X, ZHANG D Y. Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting[J]. Journal of Materials Processing Technology, 2006, 180(1-3):91-95. [37] LU D, WANG Q, WU Y B, et al. Fundamental turning characteristics of inconel 718 by applying ultrasonic elliptical vibration on the base plane[J]. Materials and Manufacturing Processes, 2015, 30(8):1010-1017. [38] WANG Q, WU Y B, GU J, et al. Fundamental machining characteristics of the in-base-plane ultrasonic elliptical vibration assisted turning of inconel 718[J]. Procedia CIRP, 2016, 42:858-862. [39] 李勋, 张德远. 单激励超声椭圆振动车削薄壁筒实验研究[J]. 航空学报, 2006, 27(4):720-723. LI X, ZHANG D Y. Research on experiments of single actuator driven ultrasonic elliptical vibration cutting ultra-thin wall parts[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):720-723(in Chinese). [40] 张德远. 振动切削的精密微细切削特性[J]. 北京航空航天大学学报, 1993, 19(4):61-68. ZHANG D Y. The mechanism of precision cutting in vibration cutting[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993, 19(4):61-68(in Chinese). [41] DING H, IBRAHIM R, CHENG K, et al. Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12):1115-1118. [42] WU C J, CHEN S J, XIAO C W, et al. Longitudinal-torsional ultrasonic vibration-assisted side milling process[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(10):3356-3363. [43] GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture, 2017, 123:160-170. [44] LIU J, ZHANG D Y, QIN L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):141-150. [45] GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B:Engineering, 2020, 183:107698. [46] GENG D X, ZHANG D Y, LI Z, et al. Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks[J]. Ultrasonics, 2017, 75:80-90. [47] GENG D X, ZHANG D Y, XU Y G, et al. Rotary ultrasonic elliptical machining for side milling of CFRP:Tool performance and surface integrity[J]. Ultrasonics, 2015, 59:128-137. [48] ZHANG C, SONG Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism[J]. Ultrasonics, 2019, 95:79-94. [49] SUI H, ZHANG X Y, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Materials Processing Technology, 2017, 247:111-120. [50] LU Z H, ZHANG D Y, ZHANG X Y, et al. Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Materials Processing Technology, 2020, 279:116584. [51] ZHANG X Y, LU Z H, SUI H, et al. Surface quality and residual stress study of high-speed ultrasonic vibration turning Ti-6Al-4V alloys[J]. Procedia CIRP, 2018, 71:79-82. [52] LI S M, ZHANG D Y, LIU C J, et al. Influence of dynamic angles and cutting strain on chip morphology and cutting forces during titanium alloy Ti-6Al-4V vibration-assisted drilling[J]. Journal of Materials Processing Technology, 2021, 288:116898. [53] LI S M, ZHANG D Y, SHAO Z Y, et al. Information feedback self-adaptive harmony search algorithm for the bovine cortical bone vibration-assisted drilling optimization[J]. Measurement, 2020, 149:107020. [54] ZHANG D Y, WANG L J. Investigation of chip in vibration drilling[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3):165-176. [55] ZHANG D Y, CHEN D C. Relief-face friction in vibration tapping[J]. International Journal of Mechanical Sciences, 1998, 40(12):1209-1222. [56] 张德远, 陈鼎昌. 钛合金振动攻丝降低攻丝扭矩的研究[J]. 机械工程学报, 1994(1):18-22, 29. ZHANG D Y, CHEN D C. Study on tapping torque in titanium alloys vibration tapping[J]. Chinese Journal of Mechanical Engineering, 1994(1):18-22, 29(in Chinese). [57] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12):3535-3549. [58] PENG Z L, ZHANG X Y, ZHANG D Y. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools[J]. Tribology International, 2021, 155:106766. [59] PENG Z L, ZHANG X Y, ZHANG D Y. Integration of finishing and surface treatment of Inconel 718 alloy using high-speed ultrasonic vibration cutting[J]. Surface and Coatings Technology, 2021, 413:127088. [60] PENG Z L, ZHANG X Y, ZHANG D Y. Effect of radial high-speed ultrasonic vibration cutting on machining performance during finish turning of hardened steel[J]. Ultrasonics, 2021, 111:106340. [61] ZHANG X Y, SUI H, ZHANG D Y, et al. Measurement of ultrasonic-frequency repetitive impulse cutting force signal[J]. Measurement, 2018, 129:653-663. [62] ZHANG X Y, SUI H, ZHANG D Y, et al. Study on the separation effect of high-speed ultrasonic vibration cutting[J]. Ultrasonics, 2018, 87:166-181. [63] ZHANG X Y, SUI H, ZHANG D Y, et al. An analytical transient cutting force model of high-speed ultrasonic vibration cutting[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):3929-3941. [64] ZHANG X Y, LU Z H, PENG Z L, et al. Development of a tool-workpiece thermocouple system for comparative study of the cutting temperature when high-speed ultrasonic vibration cutting Ti-6Al-4V alloys with and without cutting fluids[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):237-246. [65] LIU J J, JIANG X G, HAN X, et al. Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8):1333-1348. [66] 刘佳佳, 姜兴刚, 张德远. 钛合金高速旋转超声椭圆振动侧铣削切屑特征和刀具磨损研究[J]. 机械工程学报, 2019, 55(19):186-194. LIU J J, JIANG X G, ZHANG D Y. Research on the characteristics of chips and tool flank wear in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55(19):186-194(in Chinese). [67] 张翔宇, 隋翯, 张德远, 等. 超声振动改善深孔镗削加工质量[J]. 机械工程学报, 2017, 53(19):143-148. ZHANG X Y, SUI H, ZHANG D Y, et al. The improvement of deep-hole boring machining quality assisted with ultrasonic vibration[J]. Journal of Mechanical Engineering, 2017, 53(19):143-148(in Chinese). [68] HAN X, ZHANG D Y. Effects of separating characteristics in ultrasonic elliptical vibration-assisted milling on cutting force, chip, and surface morphologies[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9-10):3075-3084. [69] 张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19):120-127. ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19):120-127(in Chinese). [70] ZHANG X Y, PENG Z L, LI Z M, et al. Influences of machining parameters on tool performance when high-speed ultrasonic vibration cutting titanium alloys[J]. Journal of Manufacturing Processes, 2020, 60:188-199. [71] CHENG M L, ZHANG D Y, CHEN H W, et al. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J]. Journal of Materials Processing Technology, 2014, 214(11):2395-2401. [72] 刘佳佳, 姜兴刚, 高泽, 等. 高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J]. 机械工程学报, 2019, 55(11):215-223. LIU J J, JIANG X G, GAO Z, et al. Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55(11):215-223(in Chinese). [73] LI X, YANG S L, LU Z H, et al. Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens[J]. Journal of Materials Processing Technology, 2020, 275:116386. [74] LIU J J, JIANG X G, HAN X, et al. Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5-8):1451-1465. [75] SUI H, ZHANG X Y, ZHANG D Y. Surface modeling and analysis of high-speed ultrasonic vibration cutting[J]. Machining Science and Technology, 2021, 25(1):100-117. [76] JIANG X G, ZHANG X Y, ZHU X B, et al. Study of phase shift control in high-speed ultrasonic vibration cutting[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2467-2474. [77] ZHANG M L, ZHANG D Y, GENG D X, et al. Surface and sub-surface analysis of rotary ultrasonic elliptical end milling of Ti-6Al-4V[J]. Materials & Design, 2020, 191:108658. [78] ZHANG M L, ZHANG D Y, GENG D X, et al. Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2020, 821:153266. [79] ZHANG M L, ZHANG D Y, GUO H L, et al. High-speed rotary ultrasonic elliptical milling of Ti-6Al-4V using high-pressure coolant[J]. Metals, 2020, 10(4):500. [80] PENG Z L, ZHANG X Y, ZHANG D Y. Improvement of Ti-6Al-4V surface integrity through the use of high-speed ultrasonic vibration cutting[J]. Tribology International, 2021, 160:107025. |
[1] | Zhiting GAO, Zhuang MA, Yanbo LIU. Effect of CVD-SiC array structure on ablation resistance of ZrB2/SiC coatings [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 428842-428842. |
[2] | Hongwei LI, Xuelin LEI, Chengcheng ZHANG, Chaozong TANG, Shenglong KANG, Yalong CHEN, Lyuyi CHENG, Xiancheng ZHANG. Optimization of process parameters for multi⁃annular convex hull rotating cold expansion and extrusion reinforcement of GH4169 high⁃temperature alloy hole structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 429692-429692. |
[3] | Xiangyu WANG, Jinhui WANG, Wenhao QIU, Jintao NIU, Xiuli FU, Yang QIAO. Material removal mechanism and surface integrity of cutting titanium aluminum alloy under different cooling conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629471-629471. |
[4] | Xiuhong LI, Xingfu WANG, Wenhui LI, Haibin CHEN, Shengqiang YANG. Research progress on precision and performance synergistic finishing for aerospace engine critical components [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629860-629860. |
[5] | Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313. |
[6] | Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255. |
[7] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[8] | Yuchao GUO, Likai WANG, Xigui SUN, Xiaohua NIE. Optimization technology for complex test load of civil fuselage panel [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 227989-227989. |
[9] | Dong WU, Hong YANG, Wenfeng ZHAO, Yue LUO. High temperature strain measurement of hypersonic aircraft carbon-based composite material structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 160-169. |
[10] | RAN Qingbo, XIAO Hong, YANG Fuhong, DUAN Yugang. Trajectory planning algorithm for automatic wire laying on perforated surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 425602-425602. |
[11] | LUO Shengfeng, WANG Guangjian, MA Xiaobin, ZHENG Lili, WANG Ruijun. Simulation of flame spread of titanium-alloy sheet under effect of titanium droplet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 425652-425652. |
[12] | WAN Aoshuang. Probabilistic assessment on damage tolerance of composite helicopter horizontal tail structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525557-525557. |
[13] | WANG Yupeng, LYU Shuaishuai, YANG Yu, LI Jiaxin, WANG Yezi. Damage recognition of composite structures based on domain adaptive model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526752-526752. |
[14] | XIAO Guijian, LIU Shuai, HE Yi, LIU Gang, ZHU Shengwang, SONG Shayu. Defocus control and surface topography of titanium alloy laser belt processing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525603-525603. |
[15] | ZHANG Jiabo, ZHANG Kaihu, FAN Hongtao, LU Mingyu, GAO Ze, ZHANG Xiaohui. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525735-525735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341