[1] 李福泉, 高振增, 李俐群, 等. TC4表面丝粉同步激光熔覆制备复合材料层的微观组织和性能[J]. 稀有金属材料与工程, 2017, 46(1):177-182. LI F Q, GAO Z Z, LI L Q, et al. Microstructure and properties of compound layer fabricated by coincident wire-powder laser cladding on Ti6Al4V surface[J]. Rare Metal Materials and Engineering, 2017, 46(1):177-182(in Chinese). [2] 郭良刚, 杨合, 邸伟佳, 等. TC4钛合金薄壁带筋锥形环辗轧充填规律[J]. 航空学报, 2015, 36(8):2798-2806. GUO L G, YANG H, DI W J, et al. Filling rules in thin-walled and ribbed conical ring rolling for TC4titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2798-2806(in Chinese). [3] PAYDAS H, MERTENS A, CARRUS R, et al. Laser cladding as repair technology for Ti-6Al-4V alloy:Influence of building strategy on microstructure and hardness[J]. Materials & Design, 2015, 85(15):497-510. [4] 张天刚, 庄怀风, 薛鹏, 等. 钛基稀土激光熔覆层组织细化机制及性能[J].航空学报, 2020, 41(9):423553. ZHANG T G, ZHUANG H F, XUE P, et al. Microstructure refinement mechanism and properties of Ti-based rare earth laser cladding layers[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):423553(in Chinese). [5] LI N, XIONG Y,XIONG H P, et al. Microstructure, formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Material Characterization, 2019, 148:43-51. [6] HU H D, LIU Z D, WANG L. Microstructures and properties of TiCx-reinforced metal matrix composite coating on TC4 alloy prepared by laser cladding[J]. Material Research Innovations, 2015, 19(S9):192-197. [7] WANG W F, JIN L S, YANG J G,et al. Directional growth whisker reinforced Ti-base composites fabricated by laser cladding[J]. Surface and Coatings Technology, 2013, 236:45-51. [8] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings:A review[J]. Journal of Rare Earths, 2016, 34(6):549-564. [9] 张天刚, 庄怀风, 姚波, 等. Y2O3对钛基激光熔覆层组织及性能的影响[J/OL]. 复合材料学报:(2019-09-20)[2020-03-20]. https://doi.org/10.13801/j.cnki.fhclxb.20190920.001. ZHANG T G, ZHUANG H F, YAO B, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer[J/OL]. Acta Materiae Compositae Sinica:(2019-09-20)[2020-03-20]. https://doi.org/10.13801/j.cnki.fhclxb.20190920.001(in Chinese). [10] LI J, LUO X, LI G J. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear, 2014, 310(1-2):72-82. [11] DAS A K, SHARIFF S M, ROY C A. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering[J]. Tribology International, 2016, 95:35-43. [12] YIN Y, PAN C L, ZHANG R H, et al. The effect of Ti addition on the microstructure and properties of high chromium iron-based coatings[J]. Journal of Alloys and Compounds, 2018,765:782-790. [13] WENG F, YU H J, CHEN C Z,et al. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition[J]. Materials Manufacturing Processes, 2016, 31(11):1461-1467. [14] ZHU R D, LI Z Y, LI X X, et al. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J]. Applied Surface Science, 2015, 353:405-413. [15] LIU J L, YU H J, CHEN C Z, et al. Research and development status of laser cladding on magnesium alloys:A review[J]. Optics and Lasers in Engineering, 2017, 93:195-210. [16] 叶大伦, 胡建华. 实用无机热力学数据手册[M]. 2版. 北京:冶金工业出版社, 2002:115 YE D L, HU J H. Utility inorganic materials thermodynamics data handbook[M]. 2nd ed. Beijing:Metallurgy Industry Press, 2002:115(in Chinese). [17] 许长庆, 李贵江. 激光表面合金化制备TiC颗粒增强复合材料微观结构及摩擦学性能研究[J]. 中国激光, 2008, 35(11):1770-1772. XU C Q, LI G J. Microstructure and wear resistance of TiC carbide-reinforced composite coating prepared by laser surface alloying[J]. Chinese Journal of Lasers, 2008, 35(11):1770-1772(in Chinese). [18] 朱和国, 王恒志, 吴申庆. α-Al2O3, TiB2颗粒增强铝基复合材料的XD合成[J]. 金属学报, 2001, 37(3):321-324. ZHU H G, WANG H Z, WU S Q. α-Al2O3 and TiB2 particles reinforced aluminum matrix composites fabricated by means of exothermic dispersion[J]. Acta Metallurgica Sinica, 2001, 37(3):321-324(in Chinese). [19] 张天刚, 庄怀风, 肖海强, 等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响[J]. 中国激光, 2019, 46(9):0903001. ZHANG T G, ZHUANG H F, XIAO H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer[J]. Chinese Journal of Lasers, 2019, 46(9):0903001(in Chinese). [20] 朱韬, 纪秀林, 张秋阳, 等. 钢表面TiC/Ni3Al复合涂层及其冲蚀性能[J]. 材料研究学报, 2013, 27(3):299-306. ZHU T, JI X L, ZHANG Q Y, et al.TiC/Ni3Al composite coating synthesized in situ on a steel and slurry erosion wear resistance[J]. Chinese Journal of Materials Research, 2013, 27(3):299-306(in Chinese). [21] 王振廷, 周晓辉. 氩弧熔敷原位自生TiC-TiB2/Fe复合涂层组织与磨损性能的研究[J]. 稀有金属材料与工程, 2009, 38(S1):155-158. WANG Z T, ZHOU X H. Microstructure and properties of TiC-TiB2/Fe composite coating by argon arc cladding[J]. Rare Metal Materials and Engineering, 2009, 38(S1):155-158(in Chinese). [22] YUN X, ZHOU Y F, YANG J, et al. Refinement of nano-Y2O3 on microstructure of hypereutectic Fe-Cr-C hardfacing coatings[J]. Journal of Rare Earths, 2015, 33(6):671-678. [23] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7):1987-1995. [24] HEGENSCHEIDT T.Moeglichkeiten und Grenzen des roentgen-beugungs experiments aufgezeigt am beispiel dreier "einfacher" strukturen[D]. Karlsruhe:Universitaet Karlsruhe, 1998:1-81. [25] SHIMADE S, WATANABE J, KODAIRA. Flux growth and characterization ofTiC crystals[J]. Journal of Materials Science, 1989, 24(7):2513-2515. [26] DUSCHANEK H, ROGL P, LUKAS H L. A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B-C-Ti) ternary system[J]. Journal of Phase Equilibria, 1995, 16(1):46-60. [27] TIJO D, MASANTA M, DAS A K. In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method:Part-I. Microstructure evolution[J]. Surface and Coatings Technology, 2018, 344:541-552. |