ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (5): 524026-524026.doi: 10.7527/S1000-6893.2020.24026
• Review • Previous Articles Next Articles
HUANG Hailiang1,2, CHEN Yueliang1, ZHANG Zhuzhu1, ZHANG Yong1, BIAN Guixue1, WANG Chenguang1
Received:
2020-03-27
Revised:
2020-04-10
Online:
2021-05-15
Published:
2020-05-21
Supported by:
CLC Number:
HUANG Hailiang, CHEN Yueliang, ZHANG Zhuzhu, ZHANG Yong, BIAN Guixue, WANG Chenguang. Research progress of corrosion simulation of aircraft structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524026-524026.
[1] | 陈跃良. 海军飞机结构腐蚀控制及强度评估[M]. 北京:国防工业出版社, 2009. CHEN Y L. Corrosion control and strength evaluation of naval aircraft structure[M]. Beijing:National Defense Industry Press, 2009(in Chinese). |
[2] | 许宏良, 殷苏民. 基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J]. 表面技术,2018, 47(2):177-181. XU H L, YIN S M. Prediction model of pipeline corrosion rate based on improved bp neural network[J]. Surface Technology,2018, 47(2):177-181(in Chinese). |
[3] | 向乃瑞, 闫海, 王炜, 等. GA-BP神经网络预测金属腐蚀速率[J]. 电力学报, 2018, 33(1):48-54. XIANG N R, YAN H, WANG W, et al. Prediction of metal corrosion rate based on GA-BP neural network[J]. Journal of Electric Power, 2018, 33(1):48-54(in Chinese). |
[4] | 孟遂民, 向乃瑞, 黄力. 基于PSO-LSSVM的拉线棒腐蚀预测[J]. 腐蚀与防护, 2020, 41(1):23-28. MENG S M, XIANG N R, HUANG L. Anchor rod corrosion prediction based on PSO-LSSVM[J]. Corrosion & Protection, 2020, 41(1):23-28(in Chinese). |
[5] | JIMENEZCOME M J, TURIAS I J, RUIZAGUILAR J J, et al. A comprehensive approach based on SVM to model pitting corrosion behaviour of EN 1.4404 stainless steel[J]. Materials and Corrosion, 2014, 65(10):1024-1032. |
[6] | 曹楚南. 中国材料的自然环境腐蚀[M]. 3版. 北京:化学工业出版社, 2008:43-46. CAO C N. Natural environment corrosion of Chinese materials[M]. 3rd ed. Beijing:Chemical Industry Press, 2008:43-46(in Chinese). |
[7] | SNIHIROVA D, HÖCHE D, LAMAKA S, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment:Modelling and experimental validation[J]. Corrosion Science, 2019,157:70-78. |
[8] | WABER J T, FAGAN B. Mathematical studies on galvanic corrosion. 4. influence of electrolyte thickness on the potential and current distributions over coplanar electrodes using polarization parameters[J]. Journal of the Electrochemical Society, 1956,103(1):64-72. |
[9] | WABER J T. Mathematical studies on galvanic corrosion.1.coplanar electrodes with negligible polarization[J]. Journal of the Electrochemical Society, 1954,101(6):271-276. |
[10] | WABER J T, MORRISSEY J, RUTH J. Mathematical studies on galvanic corrosion. 5. calculation of the average value of the corrosion current parameter[J]. Journal of the Electrochemical Society, 1956,103(3):C68. |
[11] | WABER J T. Mathematical studies of galvanic corrosion.3.semi-infinite coplanar electrodes with equal constant polarization parameters[J]. Journal of the Klectrochemical Society, 1955, 102(7):420-429. |
[12] | 王佳. 液膜形态在大气腐蚀中的作用[M]. 北京:化学工业出版社:2017:68-69. WANG J. The role of liquid film morphology in Atmospheric Corrosion[M]. Beijing:Chemical Industry Press,2017:68-69(in Chinese). |
[13] | 陈跃良, 黄海亮, 张勇, 等. 不同液膜厚度下电偶腐蚀当量折算研究[J]. 材料导报, 2018, 32(9):1571-1576. CHEN Y L, HUANG H L, ZHANG Y, et al. Study on equivalent conversion of galvanic corrosion under different liquid film thickness[J]. Materials Review, 2018, 32(9):1571-1576(in Chinese). |
[14] | 陈跃良, 黄海亮, 卞贵学, 等. 多电极偶接对金属大气腐蚀影响的试验与仿真[J]. 航空学报, 2018, 39(6):421751. CHEN Y L, HUANG H L, BIAN G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421751(in Chinese). |
[15] | LEE J. Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochimica Acta, 2006, 51(16):3256-3260. |
[16] | THEBAULT F, VUILLEMIN B, OLTRA R, et al. Modeling bimetallic corrosion under thin electrolyte films[J]. Corrosion Science, 2011, 53:201-207. |
[17] | JENÍĆEK V, PAZDEROVÁ M, DIBLÍKOVÁ L. Polarization curves scanned in a thin layer of electrolyte as the input data for galvanic corrosion simulation[J]. Koroze a Ochrana MateriÁlu, 2013, 57(3):64-68. |
[18] | JENÍĆEK V, DIBLÍKOVÁ L. A mathematical model of galvanic corrosion under the conditions of a thin electrolyte film[J]. Acta Polytechnica, 2016, 56(2):106-111. |
[19] | ZHANG Y, CHEN Y L, FAN W J, et al. Study on the galvanic corrosion of aluminum alloy single bolted lap joints in simulated atmospheres[J]. Materials and Corrosion, 2017, 68(10):1107-1115. |
[20] | CHEN Y L, HUANG H L, ZHANG Y, et al. A method of atmospheric corrosion prediction for aircraft structure[J]. Materials and Corrosion, 2019, 70(1):79-90. |
[21] | 陈卓元. 铜的大气腐蚀及其研究方法[M]. 北京:科学出版社, 2011:43-60. CHEN Z Y. Atmospheric corrosion of copper and its research methods[M]. Beijing:Science Press, 2011:43-60(in Chinese). |
[22] | SIMILLION H, DEN STEEN N V, TERRYN H, et al. Geometry influence on corrosion in dynamic thin film electrolytes[J]. Electrochimica Acta, 2016, 209:149-158. |
[23] | YOUNG P S. Modeling and analysis for atmospheric galvanic corrosion of fasteners in aluminum[D]. Ohio:University of Akron, 2015. |
[24] | DESHPANDE K B. Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corrosion Science, 2012, 62:184-191. |
[25] | MANDEL M, KRüGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fibre reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science, 2013, 73:172-180. |
[26] | CHEN Y L, HUANG H L, ZHANG Y, et al. A finite element model (FEM) for predicting the corrosion of multi-material coupling system on aircrafts[J]. Materials and Corrosion, 2018, 69(11):1649-1657. |
[27] | CROSS S R, GOLLAPUDI S, SCHUH C A. Validated numerical modeling of galvanic corrosion of zinc and aluminum coatings[J]. Corrosion Science, 2014, 88:226-233. |
[28] | KING A D, LEE J S, SCULLY J R. Finite element analysis of the galvanic couple current and potential distribution between Mg and 2024-T351 in a Mg rich primer configuration[J]. Journal of the Electrochemical Society, 2016, 163(7):C342-C356. |
[29] | BOTTE V, MANSUTTI D, PASCARELLI A. Numerical modeling of iron corrosion due to an acidic aqueous solution[J]. Applied Numerical Mathematics, 2005, 55(3):253-263. |
[30] | MURER N, OLTRA R, VUILLEMIN B, et al. Numerical modelling of the galvanic coupling in aluminium alloys:A discussion on the application of local probe techniques[J]. Corrosion Science, 2010, 52:130-139. |
[31] | YAN J F, NGUYEN T V, WHITE R E, et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater[J]. Journal of the Electrochemical Society, 1993, 140(3):733-742. |
[32] | HOCHE D. Simulation of corrosion product deposit layer growth on bare magnesium galvanically coupled to aluminum[J]. Journal of the Electrochemical Society, 2015, 162(1):C1-C11. |
[33] | DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples:Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corrosion Science, 2010, 52:3514-3522. |
[34] | WILDER J W, CLEMONS C, GOLOVATY D, et al. An adaptive level set approach for modeling damage due to galvanic corrosion[J]. Journal of Engineering Mathematics, 2015, 91(1):121-142. |
[35] | THAMIDA S K. Modeling and simulation of galvanic corrosion pit as a moving boundary problem[J]. Computational Materials Science, 2012, 65:269-275. |
[36] | MAI W J, SOGHRATI S. New phase field model for simulating galvanic and pitting corrosion processes[J]. Electrochimica Acta, 2018, 260:290-304. |
[37] | GIEßGEN T, MITTELBACH A, HÖCHE D, et al. Enhanced predictive corrosion modeling via randomly distributed boundary conditions[J]. Materials and Corrosion, 2018, 69(12):1720-1728. |
[38] | SHAIK L A, THAMIDA S K. Surface evolution of a corroding metal as a moving boundary problem by random assignment of anodic and cathodic sites[J]. Journal of Electroanalytical Chemistry, 2016, 780:264-270. |
[39] | JIN Y, LAI Z G, BI P, et al. Combining lithography and capillary techniques for local electrochemical property measurements[J]. Electrochemistry Communications, 2018, 87:53-57. |
[40] | ZHANG G A, YU N, YANG L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corrosion Science, 2014, 86:202-212. |
[41] | CHEN Y, LIU C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278. |
[42] | DEROSE J A. Aluminium alloy corrosion of aircraft structures:modelling and simulation[M]. Southampton:WIT Press, 2013. |
[43] | PALANI S. Modelling of galvanic corrosion on hybrid structures in aircraft[D]. Brussels:Université Libre de Bruxelles, 2013. |
[44] | LIU C, RAFLA V, SCULLY J R, et al. Mathematical modeling of potential and current distributions for atmospheric corrosion of galvanic coupling in airframe components[C]//NACE International, 2015. |
[45] | 刘道新. 材料的腐蚀与防护[M]. 西安:西北工业出版社, 2006:128-130. LIU D X. Corrosion and protection of materials[M]. Xi'an:Northwest Industrial Press, 2006:128-130(in Chinese). |
[46] | SHARLAND S M, TASKER P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corrosion Science, 1988, 28(6):603-620. |
[47] | WALTON J C. Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion[J]. Corrosion Science, 1990, 30(8-9):915-928. |
[48] | SHARLAND S M. A mathematical model of the initiation of crevice corrosion in metals[J]. Corrosion Science, 1992, 33(2):183-201. |
[49] | SUN W, WANG L, WU T, et al. An arbitrary Lagrangian-Eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corrosion Science, 2014, 78:233-243. |
[50] | DUDDU R, KOTA N, QIDWAI S M, et al. An extended finite element method based approach for modeling crevice and pitting corrosion[J]. Journal of Applied Mechanics, 2016, 83:081003-1-081003-10. |
[51] | XIAO Z H, HU S Y, LUO J L, et al. A quantitative phase-field model for crevice corrosion[J]. Computational Materials Science, 2018, 149:37-48. |
[52] | LI L, LI X, DONG C, et al. Computational simulation of metastable pitting of stainless steel[J]. Electrochimica Acta, 2009, 54:6389-6395. |
[53] | GUSEVA O, DEROSE J A, SCHMUTZ P. Modelling the early stage time dependence of localised corrosion in aluminium alloys[J]. Electrochimica Acta, 2013, 88:821-831. |
[54] | SUTER T, BÖHNI H. Microelectrodes for corrosion studies in microsystems[J]. Electrochimica Acta, 2001, 47:191-199. |
[55] | ANDREATTA F, FEDRIZZI L. The use of the electrochemical micro-cell for the investigation of corrosion phenomena[J]. Electrochimica Acta, 2016, 203:337-349. |
[56] | ZHU J Y, XU L N, FENG Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corrosion Science, 2016, 111:391-403. |
[57] | BIRBILIS N, BUCHHEIT R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion[J]. Journal of the Electrochemical Society, 2005, 152(4):B140-B151. |
[58] | BIRBILIS N, BUCHHEIT R G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH[J]. Journal of the Electrochemical Society, 2008, 155(3):C117-C126. |
[59] | SVDHOLZ A D, KIRKLAND N T, BUCHHEIT R G, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys[J]. Electrochemical and Solid-State Letters, 2011, 14(2):C5-C7. |
[60] | DESHPANDE K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochimica Acta, 2011, 56:1737-1745. |
[61] | XIAO J, CHAUDHURI S. Predictive modeling of localized corrosion:an application to aluminum alloys[J]. Electrochimica Acta, 2011, 56:5630-5641. |
[62] | ABODI L C, DEROSE J A, VAN D S, et al. Modeling localized aluminum alloy corrosion in chloride solutions under non-equilibrium conditions:steps toward understanding pitting initiation[J]. Electrochimica Acta, 2012, 63:169-178. |
[63] | YIN L, JIN Y, LEYGRAF C, et al. A FEM model for investigation of micro-galvanic corrosion of Al alloys and ef-fects of deposition of corrosion products[J]. Electrochimica Acta, 2016, 192:310-318. |
[64] | WANG Y, YIN L, JIN Y, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Steric hindrance effect of corrosion product[J]. Journal of the Electrochemical Society, 2017, 164(14):C1035-C1043. |
[65] | YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Effect of geometric factors[J]. Journal of the Electrochemical Society, 2017, 164(2):C75-C84. |
[66] | YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys:Effect of chemical factors[J]. Journal of the Electrochemical Society, 2017, 164(13):C768-C778. |
[67] | SCHEINER S, HELLMICH C. Finite volume model for diffusion and activation-controlled pitting corrosion of stainless steel[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:2898-2910. |
[68] | MAI W J, SOGHRATI S, BUCHHEIT R G. A phase field model for simulating the pitting corrosion[J]. Corrosion Science, 2016, 110:157-166. |
[69] | ANSARI T Q, XIAO Z H, HU S Y, et al. Phase-field model of pitting corrosion kinetics in metallic materials[J]. Computational Materials, 2018, 4(1):1-9. |
[70] | CHEN Z, BOBARU F. Peridynamic modeling of pitting corrosion damage[J]. Journal of the Mechanics and Physics of Solids, 2015, 78:352-381. |
[71] | DE M D, OTERKUS E. Finite element implementation of a peridynamic pitting corrosion damage model[J]. Ocean Engineering, 2017, 135:76-83. |
[72] | CHEN Z, ZHANG G, BOBARU F. The influence of passive film damage on pitting corrosion[J]. Journal of the Electrochemical Society, 2016, 163(2):C19-C24. |
[73] | BREWICK P T, KOTA N, LEWIS A C, et al. Microstructure-sensitive modeling of pitting corrosion:Effect of the crystallographic orientation[J]. Corrosion Science, 2017, 129:54-69. |
[74] | KOTA N, QIDWAI S M, LEWIS A C, et al. Microstructure-based numerical modeling of pitting corrosion in 316 stainless steel[J]. ECS Transactions, 2013, 50(31):155-164. |
[75] | 钟群鹏, 赵子华. 断口学[M]. 北京:高等教育出版社, 2006. ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing:Higher Education Press, 2006(in Chinese). |
[76] | MACDONALD D D, LU P C, URQUIDI M M, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments[J]. Corrosion, 1996, 52(10):768-785. |
[77] | PALINLUC T, PÉREZMORA R, BATHIAS C, et al. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion[J]. Engineering Fracture Mechanics, 2010, 77(11):1953-1962. |
[78] | CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7):2467-2472. |
[79] | LU B T, LUO J L, NORTON P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Materialia, 2009, 57:41-49. |
[80] | HUANG Y H, TU S T, XUAN F Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution[J]. Nuclear Engineering and Design, 2013, 257:45-52. |
[81] | TANG X, CHENG Y F. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochimica Acta, 2009, 54(5):1499-1505. |
[82] | ZHANG G A, CHENG Y F. Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution[J]. Corrosion Science, 2010, 52(3):960-968. |
[83] | XU L Y, CHENG Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J]. Corrosion Science, 2012, 59:103-109. |
[84] | XU L Y, CHENG Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corrosion Science, 2012, 64:145-152. |
[85] | PIDAPARTI R M, RAO A S. Analysis of pits induced stresses due to metal corrosion[J]. Corrosion Science, 2008, 50:1932-1938. |
[86] | GUTMAN E M. Mechanochemistry of solid surfaces[M]. Singapore:World Scientific Publishing Company, 1994. |
[87] | XU L Y, CHENG Y F. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion[J]. Corrosion Science, 2013, 73:150-160. |
[88] | XU L Y, CHENG Y F. A finite element based model for prediction of corrosion defect growth on pipelines[J]. International Journal of Pressure Vessels and Piping, 2017, 153:70-79. |
[89] | WANG Y K, WHARTON J A, SHENOI R A. Mechano-electrochemical modelling of corroded steel structures[J]. Engineering Structures, 2016, 128:1-14. |
[90] | ADLAKHA I, BAZEHHOUR B G, MUTHEGOWDA N, et al. Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint[J]. Corrosion Science, 2018, 133:300-309. |
[91] | BAZEHHOUR B G, ADLAKHA I, SOLANKI K N. Role of static and cyclic deformation on the corrosion behavior of a magnesium-steel structural joint[J]. JOM, 2017, 69:2328-2334. |
[92] | SARKAR S, WARNER J E, AQUINO W. A numerical framework for the modeling of corrosive dissolution[J]. Corrosion Science, 2012, 65:502-511. |
[93] | SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4):1591-1595. |
[94] | ONISHI Y, TAKIYASU J, AMAYA K, et al. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method[J]. Corrosion Science, 2012, 63:210-224. |
[95] | SOGHRATI S, MAI W J, LIANG B, et al. A boundary collocation meshfree method for the treatment of Poisson problems with complex morphologies[J]. Journal of Computational Physics, 2015, 281:225-236. |
[96] | BELYTSCHKO T, GRACIE R, VENTURA G. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4):1-31. |
[97] | CHESSA J, SMOLINSKI P, BELYTSCHKO T. The extended finite element method (XFEM) for solidification problems[J]. International Journal for Numerical Methods in Engineering, 2002, 53(8):1959-1977. |
[98] | DUDDU R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method[J]. Computational Mechanics, 2014, 54(3):613-627. |
[99] | STAHLE P, HANSEN E. Phase field modelling of stress corrosion[J]. Engineering Failure Analysis, 2015, 47:241-251. |
[100] | MAI W J, SOGHRATI S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125:87-98. |
[101] | NICKERSON W C, IYYER N, LEGG K, et al. Modeling galvanic coupling and localized damage initiation in airframe structures[J]. Corrosion Reviews, 2017, 35:205-223. |
[102] | DE BORST R. Challenges in computational materials science:Multiple scales, multi-physics and evolving discontinuities[J]. Computational Materials Science, 2008, 43(1):1-15. |
[1] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
[2] | Fangyi SHENG, Guolin YANG, Fantong MENG, Zhigang DONG, Renke KANG. Finite element simulation analysis in helical milling of countersunk hole [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428690-428690. |
[3] | Yongjie HUANG, Zhangsong NI, Jie PAN. Simulation of electro-impulse de-icing considering ice fracture and interface debonding [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729306-729306. |
[4] | Zhenyu WANG, Jizhen WANG, Jingyi YANG, Pengyuan HE, Chenghao PAN, Lingbo ZHOU, Cheng HE, Huan HE. Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 226559-226559. |
[5] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[6] | Jingyu GU, Shuai LI, Aman ZHANG. Development and collapse mechanism of underwater vessel water exit cavitation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528820-528820. |
[7] | Zhenyu MA, Xiaolong DENG, Xixiang YANG, Bingjie ZHU. Thermal⁃structure coupling characteristics of flexible envelopes for stratospheric airships at float conditions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228337-228337. |
[8] | Tianchun ZOU, Yuezhang JU, Yuxi GUAN, Zegang LI, Hongcheng CHEN. Effect of stacking sequence on fatigue behavior of CFRP⁃Al joint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 428264-428264. |
[9] | Jiangbo CHEN, Kai ZENG, Baoying XING, Hongshen ZHANG, Yanfang DING, Xiaocong HE. Aluminum alloy clinch-bonding with hot melt adhesive film and joint failure analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 428029-428029. |
[10] | Xiurui WANG, Kaishang LI, Hanghang GU, Yong ZHANG, Tiwen LU, Runzi WANG, Xiancheng ZHANG. A unified criterion for high⁃low cycle fatigue life prediction based on crystal plasticity theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427300-427300. |
[11] | Laixiao LU, Changguan XU, Jianhua LIU, Meizhen QIN, Yingbo LYU, Yuqin YAN. Influence of initial stress state on bilateral rolling process of thin⁃walled part [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427415-427415. |
[12] | WU Zhiyuan, YAN Han, WU Linchao, MA Hui, QU Yegao, ZHANG Wenming. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625442-625442. |
[13] | CAO Yi, MENG Gang, JU Yongjian, XU Weisheng. Large-stroke compliant micro-positioning stage considering parasitic rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425498-425498. |
[14] | YU Yuxi, ZHANG Weibin, SUN Yi, CONG Minghui, ZHU Jian, SONG Jingyuan. Simulation analysis of deformation behavior and resilience of Ni-based alloy canted coil spring for dynamic seal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425527-425527. |
[15] | CAO Yong, ZHANG Chao. Impact damage behavior of thin-ply composites: A review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525323-525323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341