[1] CHICKERMANE H, GEA H C. Design of multi-component structural systems for optimal layout topology and joint locations[J]. Engineering with Computers, 1997, 13(4):235-243.
[2] LI Q, STEVEN G P, XIE Y M. Evolutionary structural optimization for connection topology design of multi-component systems[J]. Engineering Computations, 2001, 18(3/4):460-479.
[3] MA Z D, KIKUCHI N, PIERRE C, et al. Multidomain topology optimization for structural and material designs[J]. Journal of Applied Mechanics, 2006, 73(4):565-573.
[4] ZHU J H, ZHANG W H, BECHERS P. Integrated layout design of multi-component system[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6):631-651.
[5] ZHU J H, ZHANG W H. Coupled design of components layout and supporting structures using shape and topology optimization[C]//Proceedings of the Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems.[S.l.]:[s.n.], 2006.
[6] ZHU J H, ZHANG W H, BECKERS P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique[J]. Structural and Multidisciplinary Optimization, 2008, 36(1):29-41.
[7] ZHU J H, ZHANG W H. Integrated layout design of sup-ports and structures[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9):557-569.
[8] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化[J]. 航空学报, 2015, 36(8):2662-2669. ZHANG W H, GUO W J, ZHU J H. Integrated layout and topology optimization design of multi-component systems with assembly units[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2662-2669(in Chinese).
[9] MEAGHER D. Geometric modeling using octree encod-ing[J]. Computer Graphics and Image Processing, 1982, 19(2):129-147.
[10] SAMET H, WEBBER R E. Hierarchical data structures and algorithms for computer graphics. I. Fundamentals[J]. IEEE Computer Graphics and Applications, 1988, 8(3):48-68.
[11] MOORE A. The circle tree-A hierarchical structure for efficient storage, access and multi-scale representation of spatial data[C]//14th Annual Colloquium of the Spatial Information Research Centre.[S.l.]:[s.n.], 2002:149-156.
[12] CAMERON S. Approximation hierarchies and S-bounds[C]//Proceedings of the first ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications. New York:ACM, 1991:129-137.
[13] 徐义春, 董方敏, 刘勇, 等. 带平衡约束矩形布局优化问题的遗传算法[J]. 模式识别与人工智能, 2010, 23(6):794-800. XU Y C, DONG F M, LIU Y, et al. Genetic algorithm for rectangle layout optimization with equilibrium constraints[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(6):794-800(in Chinese).
[14] 黎自强, 田茁君, 王奕首, 等. 求解平衡约束圆形Packing问题的快速启发式并行蚁群算法[J]. 计算机研究与发展, 2012, 49(9):1899-1909. LI Z Q, TIAN Z J, WANG Y S, et al. A fast heuristic parallel ant colony algorithm for circles packing problem with equilibrium constraints[J]. Journal of Computer Research and Development, 2012, 49(9):1899-1909(in Chinese).
[15] TENG H, SUN S, LIU D, et al. Layout optimization for the objects located within a rotating vessel-A three-dimensional packing problem with behavioral constraints[J]. Computers & Operations Research, 2001, 28(6):521-535.
[16] WANG Y S, TENG H F. Knowledge fusion design method:Satellite module layout[J]. Chinese Journal of Aeronautics, 2009, 22(1):32-42.
[17] ZHANG W H, ZHU J H. A new finite-circle family method for optimal multi-component packing design[C]//WCCM VII.[S.l.]:[s.n.], 2006.
[18] GAO H H, ZHU J H, ZHANG W H, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289:387-408.
[19] 单鹏. 镶嵌多个部件的结构拓扑优化设计[D]. 大连:大连理工大学, 2008:33-34. SHAN P. Optimal embedding objects in the topology de-sign of structure[D]. Dalian:Dalian University of Technology, 2008:33-34(in Chinese).
[20] KANG Z, WANG Y. Integrated topology optimization with embedded movable holes based on combined description by material density and level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 255:1-13.
[21] COURANT R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 1943, 49:1-23.
[22] FIACCO A V, MCCORMICK G P. Extensions of SUMT for nonlinear programming:Equality constraints and extrapolation[J]. Management Science, 1966, 12(11):816-828.
[23] CHEN Y L, HE P L, ZHANG Y H. Combining penalty function with modified chicken swarm optimization for constrained optimization[C]//First International Conference on Information Sciences, Machinery, Materials and Energy. Pairs:Atlantis Press, 2015:1899-1907.
[24] HUANG X X, YANG X Q, TEO K L. Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints[J]. Journal of Global Optimization, 2006, 36(4):637-652.
[25] JAYSWAL A, CHOUDHURY S. Convergence of exponential penalty function method for multiobjective fractional programming problems[J]. Ain Shams Engineering Journal, 2014, 5(4):1371-1376.
[26] YU C, TEO K L, BAI Y. An exact penalty function method for nonlinear mixed discrete programming problems[J]. Optimization Letters, 2013, 7(1):23-38.
[27] ZHU J H, GAO H H, ZHANG W H, et al. A multi-point constraints based integrated layout and topology optimization design of multi-component systems[J]. Structural and Multidisciplinary Optimization, 2014, 51(2):397-407.
[28] 何坚勇. 最优化方法[M]. 北京:清华大学出版社, 2007:349-416. HE J Y. Optimization methods[M]. Beijing:Tsinghua University Press, 2007:349-416(in Chinese). |